Methods for replication, replicated articles, and...

Plastic and nonmetallic article shaping or treating: processes – With step of making mold or mold shaping – per se – Utilizing surface to be reproduced as an impression pattern

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C205S067000, C264S219000, C264S293000, C264S299000, C264S328100, C427S248100

Reexamination Certificate

active

06641767

ABSTRACT:

BACKGROUND OF THE INVENTION
Replication tooling has been produced by several different techniques. These techniques include, for instance, machining and lithographic processing. Machining is accomplished by cutting with a stylus or microdrilling into a substrate. Devices which accomplish such machining are either manually, mechanically, or electronically controlled. These devices are capable of producing surfaces with optical grade precision, depending upon their quality. Examples of such devices include a diamond stylus and a microdrill.
Another method for the production of structured tooling relates to the use of sharpened or shaped structures, such as pins or rods, being forced into a relatively soft medium. For example, a traditional, multi-step approach to the production of a replication molding or tooling involves the preparation of a primary negative mold by forcing the structures into a relatively soft medium. Intermediate positive master molds are made from the negative primary mold and are then joined together to form a large positive mold. A large negative mold is then produced from the large positive mold, which is then used to produce replicated articles.
Mechanical methods are effective and economical for many kinds of structure generation. However, they can be expensive and time-consuming for the generation of very small structures.
Lasers have been used to machine some finished articles, including molds or replication toolings. Other methods include UV, X-ray, and electronic beam lithography. Usually, these methods are expensive when small structures with high resolution need to be produced. Some of them have the limitation that only small sample sizes can be produced.
Some replication applications require optical quality surfaces, which necessitates the use of costly production devices. However, there is a growing number of applications that do not require optical quality tooling since a precisely manufactured article surface is not required.
SUMMARY OF THE INVENTION
The present invention provides methods for replicating a structured surface. In one embodiment, a method includes: providing a tool that includes a structured surface having a surface morphology of a crystallized vapor deposited material; and replicating the structured surface of the tool to form a replicated article. As used herein, a “replicated article” is separable from the tool, preferably substantially in tact such that if desired it can become a tool for further replication, although it need not be further replicated. Preferably, the method further includes separating the replicated article and the tool.
In one embodiment, the structured surface of the tool includes the crystallized vapor deposited material itself, whereas in an alternative embodiment the structured surface of the tool includes a replica of the crystallized vapor deposited material. In another embodiment, the tool consists essentially of the crystallized vapor deposited material, whereas in an alternative embodiment the tool includes a substrate on which is disposed the crystallized vapor deposited material or a replica of the crystallized vapor deposited material.
In yet another embodiment, the step of providing a tool includes: providing a substrate that includes a surface; and depositing a material on the surface of the substrate using a vapor deposition technique to form a tool that includes a structured surface having a crystallized vapor deposited material on the substrate. The vapor deposition technique can be a chemical or a physical vapor deposition technique, for example, although a chemical vapor deposition technique is preferred. The substrate can be any of a wide variety of substrates, including planar substrates, such as sheet materials, or cylindrical substrates, for example. The surface of the substrate may be nonplanar, including other microstructures or macrostructures.
In still another embodiment, the step of providing a tool includes: providing a substrate that includes a surface; depositing a material on the surface of the substrate using a vapor deposition technique to form a crystallized vapor deposited material; and separating the crystallized vapor deposited material from the substrate surface to form the tool. Preferably, the vapor deposition technique is a chemical vapor deposition technique.
As used herein, the phrase “surface morphology of a crystallized vapor deposited material” means that the shapes and sizes of the structures result directly from the crystallization process (i.e., they are formed from crystallization of the vapor deposited material), thereby forming a master tool, or as a result of replicating another surface from a master tool, for example. This morphology typically includes randomly positioned structures having sizes that vary over a wide range to include both nanostructures (e.g., those on a nano-scale) and microstructures (e.g., those on a micro-scale), preferably having a substantially continuous distribution. Generally, the range of sizes depends on the deposition method and the conditions for deposition (e.g., the rate and time of deposition). Preferably, the structured surface includes randomly positioned structures having an average size (i.e., the average of the longest dimension of the base of a structure, such as a diameter of a circular base) of at least about 10 nanometers (nm), and an average spatial distance between two adjacent structures of at least about 10 nm. Preferably, the structured surface includes randomly positioned structures having an average size of no greater than about 50,000 nm, and an average spatial distance between two adjacent structures of no greater than about 50,000 nm. The tool can be made using a substrate that has macrostructures (or microstructures) prior to vapor depositing. The resultant tool has structures on structures (e.g., microstructures on macrostructures).
The tool can be replicated using a wide variety of techniques. These include, for example: casting a curable composition on the structured surface of the tool and at least partially curing the composition on the structured surface of the tool; embossing the article with the structured surface of the tool; injection molding a polymeric material onto the structured surface of the tool; extruding a material onto the structured surface of the tool and hardening the material on the tool; electroforming a material onto the structured surface of the tool; or vapor depositing a second material onto the structured surface of the tool.
As stated above, the replicated article can be used as a tool for further replication, if desired. The replicated article can have a surface that is the negative of the surface of the tool, or it can have one surface that is the negative of the surface of the tool and another surface that is the positive of the surface of the tool. The positive or negative replica of the surface can be used as the surface of the replicated article that can be further replicated. The replicated article optionally can be physically deformed before using it as a tool for further replication. It can also be treated, as with a fluorochemical, for example, before being used as a tool for further replication.
In a preferred method of replicating a structured surface, the method includes: providing a substrate; chemical vapor depositing a material that includes a metal on the substrate to form a master tool having a structured surface formed from crystallization of the chemical vapor deposited material; replicating the structured surface of the master tool to form a replicated article; and separating the master tool and the replicated article. In another preferred method of replicating a structured surface, the method includes: providing a substrate; chemical vapor depositing a material that includes nickel on the substrate to form a master tool having a structured surface formed from crystallization of the chemical vapor deposited material; replicating the structured surface of the master tool to form a replicated article; and separating the master tool and the replicated

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for replication, replicated articles, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for replication, replicated articles, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for replication, replicated articles, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3163406

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.