Animal husbandry – Aquatic animal culturing – Fish culturing
Reexamination Certificate
2000-10-12
2002-10-15
Swiatek, Robert P. (Department: 3643)
Animal husbandry
Aquatic animal culturing
Fish culturing
C119S215000, C119S231000
Reexamination Certificate
active
06463883
ABSTRACT:
BACKGROUND OF THE INVENTION
In nature, many anadromous fish live most of their adulthood in seawater, but swim upstream to freshwater for the purpose of breeding. As a result, anadromous fish hatch from their eggs and are born in freshwater. As these fish grow, they swim downstream and gradually adapt to the seawater.
Fish hatcheries have experienced difficulty in raising these types of fish because the window of time in which the pre-adult fish adapts to seawater (e.g., undergoes smoltification) is short-lived, and can be difficult to pinpoint. As a result, these hatcheries experience significant morbidity and mortality when transferring anadromous fish from freshwater to seawater. Additionally, many of the fish that do survive the transfer from freshwater to seawater are stressed, and consequently, experience decreased feeding, and increased susceptibility to disease. Therefore, these anadromous fish often do not grow well after they are transferred to seawater.
The aquaculture industry loses millions of dollars each year due to problems it encounters in transferring pre-adult anadromous fish from freshwater to seawater. Hence, a need exists to improve methods involved in transferring pre-adult anadromous fish to seawater. A further need exists to increase survival and growth, and reduce stress, of pre-adult anadromous fish that have been transferred to seawater.
SUMMARY OF THE INVENTION
The present invention relates to methods for improving the raising of pre-adult anadromous fish or preparing these fish for transfer to seawater by increasing expression of a receptor, referred to as the Polyvalent Cation Sensing Receptor (PVCR). The expression and/or sensitivity of the PVCR is increased by subjecting the pre-adult anadromous fish to at least one modulator of the PVCR. The pre-adult anadromous fish are subjected to the modulator when it is added to their freshwater environment, and optionally, to the feed. The invention encompasses adding at least one PVCR modulator to the freshwater, and adding feed for fish consumption to the freshwater. The feed contains sodium chloride (NaCl) and, optionally, at least one PVCR modulator in an amount to contribute to a significantly increased level of the PVCR modulator in the serum of the pre-adult anadromous fish. Increased expression and/or sensitivity of the PVCR is maintained until the fish are ready to be transferred to seawater. The pre-adult anadromous fish can be maintained in the freshwater having at least one PVCR agonist until they are ready to be transferred to seawater.
In one embodiment of the invention, pre-adult anadromous fish (e.g., salmon, trout and arctic char) are prepared for transfer from freshwater to seawater by adding PVCR agonists, such as calcium and magnesium to the freshwater, and adding feed for fish consumption having between about 1% and about 10% NaCl by weight (e.g. between about 10,000 mg/kg and 100,000 mg/kg) to the freshwater. The amount of calcium added to the freshwater is an amount sufficient to bring the concentration up to between about 2.0 mM and about 10.0 mM, and the amount of magnesium added is an amount sufficient to bring the concentration up to between about 0.5 mM and about 10.0 mM. The feed can optionally include a PVCR agonist, such as an amino acid. A particular amino acid that can be added is tryptophan in an amount between about 1 gm/kg and about 10 gm/kg. The present invention also includes, optionally, exposing the pre-adult anadromous fish to a photoperiod. Preferably, the photoperiod is continuous (e.g., for a continuous period of between about 12 hours and about 24 hours in a 24 hour period).
Additional embodiments of the invention include methods of increasing or improving food consumption before and/or after seawater transfer, increasing growth, increasing survival and/or reducing mortality, reducing osmotic damage, transferring parr (e.g., between about 10 and about 60 grams) to seawater, and transferring a pre-adult anadromous fish to seawater having a temperature of about 14° C. to about 19° C. These methods are performed by adding at least one PVCR modulator to the freshwater, subjecting or exposing the pre-adult anadromous fish to at least one PVCR modulator, or introducing the pre-adult anadromous fish to freshwater having at least one PVCR modulator, in an amount sufficient to increase expression and/or sensitivity of the PVCR. The methods also involve adding feed having between about 1% and about 10% NaCl by weight to the freshwater and transferring the pre-adult anadromous fish to seawater.
In other embodiments, the invention encompasses detection assays or methods of determining whether a pre-adult anadromous fish, that are subjected to at least one PVCR modulator and are fed with feed having between about 1% and about 10% NaCl by weight, are ready for transfer to seawater, by assessing the amount of PVCR expression in the pre-adult anadromous fish. An increased level of expression and/or sensitivity, as compared to a control (e.g., PVCR expression from a fish not subjected to a PVCR modulator), indicates that the pre-adult anadromous fish are ready for transfer to seawater. In a preferred embodiment, the assay includes contacting an anti-PVCR antibody with a sample (e.g., gill, skin, intestine, urinary bladder, kidney, brain or muscle) under conditions sufficient for the formation of a complex between the antibody and the PVCR; and detecting the formation of the complex. In another embodiment the assay relates to hybridizing a nucleic acid sequence having a detectable label to the nucleic acid sequence of the PVCR of a sample taken from the pre-adult anadromous fish and detecting the hybridization.
In yet another embodiment, the present invention relates to various compositions and mixtures. In particular, the invention pertains to an aquatic food composition having a concentration of NaCl between about 10,000 mg/kg and 100,000 mg/kg (e.g., about 12,000 mg/kg). The aquatic food composition can optionally include a PVCR modulator (e.g. tryptophan in an amount between 1 gm/kg and 10 gm/kg).
The invention also embodies an aquatic mixture for providing an environment to improve the raising of pre-adult anadromous fish. The mixture includes at least one PVCR modulator. An example of such a mixture is a calcium source, that when added to freshwater, provides a concentration of between about 2.0 mM and about 10.0 mM; and a magnesium source, that when added to freshwater, provides a concentration of between about 0.5 mM and 10.0 mM.
In yet another embodiment, the present invention relates to kits. In particular, the invention embodies kits for improving the raising of pre-adult anadromous fish, that includes a PVCR modulator for addition to the freshwater and an aquatic food composition, as described herein. In another embodiment, the invention includes kits for determining whether a pre-adult anadromous fish are ready for transfer to seawater, after being subjected to at least one PVCR modulator and feed having between about 1% and about 10% NaCl by weight. The kit includes either an anti-PVCR antibody, and a solid support; or a nucleic acid sequence having a detectable label that can hybridize to nucleic acid of an aquatic PVCR.
Surprisingly, it has been discovered that increased expression and/or altering the sensitivity of the PVCR allows these pre-adult anadromous fish to better adapt to seawater. Until the discovery of the present invention, the aquaculture industry was unable to transfer the pre-adult anadromous fish to seawater without subjecting the fish to stress, death and/or disease. Unlike this practice, carrying out the steps of the invention increases the expression and/or alters the sensitivity of the PVCR and allows for transfer of the pre-adult anadromous fish to seawater with minimal or no stress, death and/or disease, and unexpectedly provides several benefits, such as increased growth and the ability to transfer these fish to water having higher temperatures, as further described herein. The present invention results in one or more of the following ad
Betka Marlies
Harris, Jr. H. William
Nearing Jacqueline
Russell David R.
Copier Floris C.
Hamilton Brook Smith & Reynolds P.C.
MariCal, LLC
Swiatek Robert P.
LandOfFree
Methods for raising pre-adult anadromous fish does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for raising pre-adult anadromous fish, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for raising pre-adult anadromous fish will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2973579