Methods for promoting growth of bone using ZVEGF4

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Hormone or other secreted growth regulatory factor,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S002600, C530S350000, C530S399000, C424S484000

Reexamination Certificate

active

06468543

ABSTRACT:

BACKGROUND OF THE INVENTION
Bone remodeling is the dynamic process by which tissue mass and skeletal architecture are maintained. The process is a balance between bone resorption and bone formation, with two cell types, the osteoclast and osteoblast, thought to be the major players. Osteoblasts synthesize and deposit new bone into cavities that are excavated by osteoclasts. The activities of osteoblasts and osteoclasts are regulated by many factors, systemic and local, including growth factors.
Many of the proteins that influence the proliferation, differentiation, and activity of osteoblasts, osteoclasts, and their precursors also affect these processes in chondrocytes, the cells responsible for cartilage formation (chondrogenesis). These proteins include platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), basic fibroblast growth factor (bFGF), transforming growth factor beta (TGF-&bgr;), bone morphogenetic proteins (BMP), and cartilage-derived growth factor (CDGF).
The exact mode by which PDGF affects the growth of osteoblasts is not yet clearly understood, however, this growth factor is generally believed to play a key role in the regulation of both normal skeletal remodeling and fracture repair. Biologically active PDGF is found as a homodimer or a heterodimer of the component A and B chains. In vitro studies have shown PDGF to be mitogenic for osteoblasts (Abdennagy et al.,
Cell Biol. Internat. Rep
. 16(3):235-247, 1992). Mitogenic activity as well as chemotactic activities associated with PDGF have been demonstrated when the growth factor is added to normal osteoblast-like cells (Tuskamota et al.
Biochem. Biophys. Res. Comm
., 175(3):745-747, 1991) and primary osteoblast cultures (Centrella et al. Endocrinol. 125 (1):13-19, 1989). Recent studies have demonstrated that the osteoblast produces the AA isoform of PDGF (Zhang et al.,
Am. J. Physiol
. 261: c348-c354, 1991).
PDGF has been shown to be useful for promoting the repair of both soft and hard tissues. For example, PDGF has been shown to promote the regeneration of bone and ligament in patients suffering from periodontal disease (Howell et al.,
J. Periodontol
. 68:1186-1193, 1997). As disclosed in U.S. Pat. No. 5,533,836, PDGF stimulates the growth of osteoblasts, and this activity is enhanced in the presence of vitamin D. PDGF has also been shown to promote the healing of gastrointestinal ulcers (U.S. Pat. No. 5,234,908) and dermal ulcers (Robson et al.,
Lancet
339:23-25, 1992; Steed et al.,
J. Vasc. Surg
. 21:71-81, 1995). The use of PDGF for stimulating chondrocyte proliferation and regenerating cartilage is disclosed in U.S. Pat. No. 6,001,352.
A PDGF homolog known as “zvegf3” was recently identified (U.S. patent application Ser. No. 09/457,066). This protein has also been designated “VEGF-R” (WIPO Publication WO 99/37671). A related protein, designated “zvegf4”, has also been identified (U.S. patent applications Ser. Nos. 09/304,216 and 60/132,250). Zvegf3 and zvegf4 are multi-domain proteins with significant homology to the PDGF/VEGF family of growth factors. WO 99/37671 discloses that VEGF-R is an angiogenic factor.
Despite the increasing knowledge of the role of growth factors in tissue growth and repair, there remains a need in the art for materials and methods for promoting the growth of bone, ligament, and cartilage. There also remains a need the art for materials and methods for modulating the proliferation and differentiation of cells in vitro and in vivo.
DESCRIPTION OF THE INVENTION
The present invention provides a method for promoting growth of bone, ligament, or cartilage in a mammal comprising administering to said mammal a composition comprising a pharmacologically effective amount of zvegf4 in combination with a pharmaceutically acceptable delivery vehicle. Within certain embodiments of the invention the delivery vehicle is powdered bone, tricalcium phosphate, hydroxyapatite, polymethacrylate, a biodegradable polyester, an aqueous polymeric gel, or a fibrin sealant. Within another embodiment of the invention the composition is locally administered at a site of a bony defect, such as a fracture, bone graft site, implant site, or periodontal pocket. Within another embodiment of the. invention, the composition is administered systemically. Within a further embodiment of the invention, the zvegf4 is covalently linked to a bone-targetting agent. Within a further embodiment of the invention, the composition is locally administered at a joint. The composition may further comprise a protein selected from the group consisting of insulin-like growth factor 1, platelet-derived growth factor, epidermal growth factor, transforming growth factor-alpha, transforming growth factor-beta, a bone morphogenetic protein, parathyroid hormone, osteoprotegerin, or a fibroblast growth factor.
The invention also provides a method for promoting proliferation or differentiation of cells comprising culturing the cells in an effective amount of zvegf4, wherein the cells are osteoblasts, osteoclasts, chondrocytes, or bone marrow stem cells. Within one embodiment the cells are bone marrow stem cells, and the method comprises harvesting the bone marrow stem cells from a patient prior to culturing. Within other embodiments the method further comprises the step of recovering osteoblasts, osteoclasts, or chrodrocytes from the cultured cells.
The invention also provides a method for promoting cartilage growth comprising the steps of (a) culturing chondrocytes ex vivo in the presence of zvegf4 under conditions wherein the chondrocytes proliferate, and and (b) placing the cultured chondrocytes into a mammal where cartilage is to be grown. Within one embodiment the chondrocytes are placed into the mammal in association with a biodegradable matrix having sufficient porosity to permit cell ingrowth. Within a related embodiment the matrix comprises a protein selected from the group consisting of zvegf4, insulin-like growth factor 1, platelet-derived growth factor, epidermal growth factor, transforming growth factor-alpha, transforming growth factor-beta, a bone morphogenetic protein, parathyroid hormone, or a fibroblast growth factor.
These and other aspects of the invention will become evident upon reference to the following detailed disclosure and the accompanying drawing.
FIGS. 1A-1G
are a Hopp/Woods hydrophilicity profile of the amino acid sequence shown in SEQ ID NO:2. The profile is based on a sliding six-residue window. Buried G, S, and T residues and exposed H, Y, and W residues were ignored. These residues are indicated in the figure by lower case letters.
As used herein, the term “bony defect” denotes a defect or void in a bone where restoration of the bone is desirable. Bony defects may arise from injury, surgery, tumor removal, ulceration, infection, or other causes, and include congenital defects. Examples of bony defects include fractures, voids resulting from tumor removal, and bone loss resulting from periodontal disease.
The terms “locally administered” and “local administration” are used to describe the application of a pharmaceutical agent at the intended site of action. Examples of local administration include, without limitation, injection into a joint space, implantation of a solid or semi-solid matrix, and direct application at a surgical site or wound. Local administration does not preclude the transmission of minor amounts of the agent to other parts of the body, such as by diffusion or circulation.
The term “zvegf4 protein” is used herein to denote proteins comprising a biologically active portion of a zvegf4 polypeptide (e.g., human zvegf4 as shown in SEQ ID NO:2 or mouse zvegf4 as shown in SEQ ID NO:4) that is mitogenic or chemotactic for mesenchymal cells. Experimental evidence indicates that biologically active zvegf4 is a dimeric protein. Zvegf4 proteins include homodimers and heterodimers as disclosed below. Using methods known in the art, zvegf4 proteins can be prepared in a variety of forms, including glycosylated or non-glycosylated; pegylated or non-pegylated; with or withou

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for promoting growth of bone using ZVEGF4 does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for promoting growth of bone using ZVEGF4, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for promoting growth of bone using ZVEGF4 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2987533

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.