Methods for producing members of specific binding pairs

Chemistry: molecular biology and microbiology – Virus or bacteriophage – except for viral vector or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C530S387300, C530S388100

Reexamination Certificate

active

06492160

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods for producing members of specific binding pairs (sbp). In particular, the present invention relates to methods for producing members of specific binding pairs involving recombination between vectors which comprise nucleic acid encoding polypeptide chain components of sbp members.
BACKGROUND OF THE INVENTION
Structurally, the simplest antibody (IgG) comprises four polypeptide chains, two heavy (H) chains and two light (L) chains inter-connected by disulphide bonds. The light chains exist in two distinct forms called kappa (K) and lambda (&lgr;). Each chain has a constant region. (C) and a variable region (V). Each chain is organized into a series of domains. The light chains have two domains, corresponding to the C region and the other to the V region. The heavy chains have four domains, one corresponding to the V region and three domains (1,2 and 3) in the C region. The antibody has two arms (each arm being a Fab region), each of which has a VL and a VH region associated with each other. It is this pair of V regions (VL and VH) that differ from one antibody to another (owing to amino acid sequence variations), and which together are responsible for recognising the antigen and providing an antigen binding site (ABS). In even more detail, each V region is made up from three complementarity determining regions (CDR) separated by four framework regions (FR). The CDR's are the most variable part of the variable regions, and they perform the critical antigen binding function.
The CDR regions are derived from many potential germ line sequences via a complex process involving recombination, mutation and selection.
It has been shown that the function of binding antigens can be performed by fragments of a whole antibody. Example binding fragments are (i) the Fab fragment consisting of the VL, VH, CL and CH1 domains; (ii) the Fd fragment consisting of the VH and CH1 domains; (iii) the Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (iv) the dAb fragment (Ward et al.,
Nature
341:544-546 (1989)) which consists of a VH domain; (v) isolated CDR regions; and (vi) F(ab′)
2
fragments, a bivalent fragment comprising two Fab fragments linked by a disulphide bridge at the hinge region.
Although the two domains of the Fv fragment are coded for by separate genes, it has proved possible to make a synthetic linker that enables them to be made as a single protein chain (known as single chain Fv (scFv));
Bird et al.,
Science
242:423-426 (1988); Huston et al.,
Proc. Natl. Acad. Sci., USA
85:5879-5883 (1988)) by recombinant methods. These scFv fragments were assembled from genes from monoclonals that had been previously isolated.
Bacteriophage have been constructed that express and display at their surface a large biologically functional binding molecule (e.g. antibody fragments, and enzymes and receptors) and which remain intact and infectious. This is described in WO 92/01047, the disclosure of which is herein incorporated by reference. Readers of the present document are urged to consult WO 92/01047 for detailed explanation of many of the procedures used in the experiments described herein. The applicants have called the structure which comprises a virus particle and a binding molecule displayed at the viral surface a “package”. Where the binding molecule is an antibody, an antibody derivative or fragment, or a domain that is homologous to an immunoglobulin domain, the applicants call the package a “phage antibody” (pAb). However, except where the context demands otherwise, where the term phage antibody is used generally, it should also be interpreted as referring to any package comprising a virus particle and a biologically functional binding molecule displayed at the viral surface.
pAbs have a range of applications in selecting antibody genes encoding antigen binding activities. For example, pAbs could be used for the cloning and rescue of hybridomas (Orlandi et al.,
Proc. Natl. Acad. Sci. USA
, 86:3833-3837 (1989)), and in the screening of large combinatorial libraries (such as found in Huse et al.,
Science
246:1275-1281 (1989)). In particular, rounds of selection using pAbs may help in rescuing the higher affinity antibodies from the latter libraries. It may be preferable to screen small libraries derived from antigen-selected cells (Casali et al.,
Science
234:476-479 (1986)) to rescue the original VH/VL pairs comprising the Fv region of an antibody. The use of pAbs may also allow the construction of entirely synthetic antibodies. Furthermore, antibodies may be made which have some synthetic sequences e.g. CDRs, and some naturally derived sequences. For example, V-gene repertoires could be made in vitro by combining un-rearranged V genes, with D and J segments. Libraries of pAbs could then be selected by binding to antigen, hypermutated in vitro in the antigen-binding loops or V domain framework regions, and subjected to further rounds of selection and mutagenesis.
The demonstration that a functional antigen-binding domain can be displayed on the surface of phage, has implications beyond the construction of novel antibodies. For example, if other protein domains can be displayed at the surface of a phage, phage vectors could be used to clone and select genes by the binding properties of the displayed protein. Furthermore, variants of proteins, including epitope libraries built into the surface of the protein, could be made and readily selected for binding activities. In effect, other protein architectures might serve as “nouvelle” antibodies.
The technique provides the possibility of building antibodies from first principles, taking advantage of the structural framework on which the antigen binding loops fold. In general, these loops have a limited number of conformations which generate a variety of binding sites by alternative loop combinations and by diverse side chains. Recent successes in modelling antigen binding sites augurs well for de novo design. In any case, a high resolution structure of the antigen is needed. However, the approach is attractive for making e.g. catalytic antibodies, particularly for small substrates. Here side chains or binding sites for prosthetic groups might be introduced, not only to bind selectively to the transition state of the substrate, but also to participate directly in bond making and breaking. The only question is whether. the antibody architecture, specialised for binding, is the best starting point for building catalysts.
Genuine enzyme architectures, such as the triose phosphate isomerase (TIM) barrel, might be more suitable. Like antibodies, TIM enzymes also have a framework structure (a barrel of &bgr;-strands and &agr;-helices) and loops to bind substrate. Many enzymes with a diversity of catalytic properties are based on this architecture and the loops might be manipulated independently on the frameworks for design of new catalytic and binding properties. The phage selection system as provided by the present disclosure can be used to select for antigen binding activities and the CDR loops thus selected, used on either an antibody framework or a TIM barrel framework. Loops placed on a e.g. a TIM barrel framework could be further modified by mutagenesis and subjected to further selection.
One class of molecules that could be useful in this type of application are receptors. For example, a specific receptor could be displayed on the surface of the phage such that it would bind its ligand. The receptor could then be modified by, for example, in vitro mutagenesis and variants having higher binding affinity for the ligand selected. The selection may be carried out according to one or more of the formats described below.
Alternatively, the phage-receptor could be used as the basis of a rapid screening system for the binding of ligands, altered ligands, or potential drug candidates. The advantages of this system namely of simple cloning, convenient expression, standard reagents and easy handling makes the drug screening application particula

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for producing members of specific binding pairs does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for producing members of specific binding pairs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for producing members of specific binding pairs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2983881

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.