Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Particulate matter
Reexamination Certificate
2001-05-07
2004-10-26
Kelly, Cynthia H. (Department: 1774)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Particulate matter
C428S402000, C428S402240, C428S411100, C428S357000, C427S128000, C106S456000, C106S480000, C359S584000, C359S585000, C359S388000
Reexamination Certificate
active
06808806
ABSTRACT:
BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates generally to methods of forming coated articles. In particular, the present invention relates to methods for producing coated articles having three dimensional-like images using magnetic pigment compositions.
2. The Relevant Technology
Various pigments, colorants, and foils have been developed for a wide variety of applications. For example, magnetic pigments have been developed for use in applications such as decorative cookware, creating patterned surfaces, and security devices. Similarly, color shifting or optically variable pigments have been developed for such uses as cosmetics, inks, coating materials, ornaments, ceramics, automobile paints, anti-counterfeiting hot stamps, and anti-counterfeiting inks for security documents and currency.
Color shifting pigments, colorants, and foils exhibit the property of changing color upon variation of the angle of incident light, or as the viewing angle of the observer is shifted. The color-shifting properties of pigments and foils can be controlled through proper design of the optical thin films or orientation of the molecular species used to form the flake or foil coating structure. Desired effects can be achieved through the variation of parameters such as thickness of the layers forming the flakes and foils and the index of refraction of each layer. The changes in perceived color which occur for different viewing angles or angles of incident light are a result of a combination of selective absorption of the materials comprising the layers and wavelength dependent interference effects. The interference effects, which arise from the superposition of light waves that have undergone multiple reflections, are responsible for the shifts in color perceived with different angles. The reflection maxima changes in position and intensity, as the viewing angle changes, due to changing interference effects arising from light path length differences in the various layers of the optical stack.
Various approaches have been used to achieve such color shifting effects. For example, small multilayer flakes, typically composed of multiple layers of thin films, are dispersed throughout a medium such as paint or ink that may then be subsequently applied to the surface of an object. Such flakes may optionally be overcoated to achieve desired colors and optical effects. Another approach is to encapsulate small metallic or silicatic substrates with varying layers and then disperse the encapsulated substrates throughout a medium such as paint or ink. Additionally, foils composed of multiple layers of thin films on a substrate material have been made.
One manner of producing a multilayer thin film structure is by forming it on a flexible web material with a release layer thereon. The various layers are deposited on the web by methods well known in the art of forming thin coating structures, such as PVD, sputtering, or the like. The multilayer thin film structure is then removed from the web material as thin film color shifting flakes, which can be added to a polymeric medium such as various pigment vehicles for use as an ink or paint. In addition to the color shifting flakes, additives can be added to the inks or paints to obtain desired color shifting results.
Color shifting pigments or foils are formed from a multilayer thin film structure that includes the same basic layers. These include an absorber layer(s), a dielectric layer(s), and optionally a reflector layer, in varying layer orders. One skilled in the art will recognize that an absorber layer is a semi-absorbing, semi transparent layer. The coatings can be formed to have a symmetrical multilayer thin film structure, such as:
absorber/dielectric/reflector/dielectric/absorber; or absorber/dielectric/absorber.
Coatings can also be formed to have an asymmetrical multilayer thin film structure, such as:
absorber/dielectric/reflector.
For example, U.S. Pat. No. 5,135,812 to Phillips et al., which is incorporated by reference herein, discloses color-shifting thin film flakes having several different configurations of layers such as transparent dielectric and partially absorbing stacks. In U.S. Pat. No. 5,278,590 to Phillips et al., which is incorporated by reference herein, a symmetric three layer optical interference coating is disclosed which comprises first and second partially transmitting absorber layers which have essentially the same material and thickness, and a dielectric spacer layer located between the first and second absorber layers.
Color shifting platelets for use in paints are disclosed in U.S. Pat. No. 5,571,624 to Phillips et al., which is incorporated by reference herein. These platelets are formed from a symmetrical multilayer thin film structure in which a first absorber layer such as chromium is formed on a substrate, with a first dielectric layer formed on the first absorber layer. A reflecting metal layer such as aluminum is formed on the first dielectric layer, followed by a second dielectric layer. A second absorber layer is formed on the second dielectric layer.
With regard to magnetic pigments, U.S. Pat. No. 4,838,648 to Phillips et al. (hereinafter “Phillips '648”), the disclosure of which is incorporated by reference, describes a thin film magnetic color shifting structure in which a magnetic material can be used as a reflector or absorber layer in the structure. One disclosed magnetic material is a cobalt nickel alloy. Phillips '648 discloses flakes and foils with the following structures:
dyed superstrate/absorber/dielectric/magnetic layer/substrate;
dyed superstrate/absorber/dielectric/magnetic layer/dielectric/absorber/dyed superstrate; and
adhesive/magnetic layer/dielectric/absorber/releasable hardcoat/substrate.
Patterned surfaces have been provided by exposing magnetic flakes to a magnetic force to effect a physical alteration in the structure of the pigment. For example, U.S. Pat. No. 6,103,361 to Batzar et al. (hereinafter “Batzar”) uses pigments made of magnetizable materials to decorate cookware. In particular, Batzar is directed toward controlling the orientation of stainless steel flakes in a fluoropolymer release coating to make patterns where at least some of the flakes are longer than the coating thickness. The patterned substrate is formed by applying magnetic force through the edges of a magnetizable die positioned under a coated base to alter the orientation of the flakes within the coating, thereby creating an imaging effect or pattern. However, Batzar does not discuss the use of optical thin film stacks or platelets employing a magnetic layer. In addition, although the stainless steel flakes used in Batzar are suitable for decorating cookware, they are poorly reflecting.
U.S. Pat. No. 2,570,856 to Pratt et al (hereinafter “Pratt”) is directed to metallic flake pigments which are based on ferromagnetic metal platelets. Like Batzar, however, Pratt uses poorly reflecting metals and does not teach the use of thin film optical stacks.
U.S. Pat. No. 5,364,689 to Kashiwagi et al. and U.S. Pat. No. 5,630,877, also to Kashiwagi, (hereinafter collectively “Kashiwagi”) disclose methods and apparatus for creating magnetically formed painted patterns. Kashiwagi uses a magnetic paint layer, which includes non-spherical magnetic particles in a paint medium, and applies a magnetic field with the magnetic field lines in the shape of the desired pattern. The final pattern is created by the different magnetic particle orientations in the hardened paint.
One attempt at incorporating a magnetic layer into a multilayer flake is disclosed in European Patent Publication EP 686675B1 to Schmid et al. (hereinafter “Schmid”), the disclosure of which is incorporated by reference. Schmid describes laminar color shifting structures which include a magnetic layer between the dielectric layer and a central aluminum layer as follows:
oxide/absorber/dielectric/magnet/Al/magnet/dielectric/absorber/oxide
Thus, Schmid uses aluminum platelets and then coats these platelets with magnetic materi
Coombs Paul G.
LeGallee Charlotte R.
Markantes Charles T.
Phillips Roger W.
Witzman Matthew R.
Dicus Tamara L.
Flex Products, Inc.
Holme Roberts & Owen LLP
Kelly Cynthia H.
LandOfFree
Methods for producing imaged coated articles by using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for producing imaged coated articles by using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for producing imaged coated articles by using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3328132