Methods for producing highly phosphorylated lysosomal...

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S194000

Reexamination Certificate

active

06534300

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to enzymes involved in the lysosomal targeting pathway and particularly to isolated and purified GlcNAc-phosphotransferase and phosphodiester &agr;-GlcNAcase, nucleic acids encoding the enzymes, processes for production of recombinant GlcNAc-phosphotransferase and phosphodiester &agr;-GlcNAcase, and the use of the enzymes for the preparation of highly phosphorylated lysosomal enzymes that are useful for the treatment of lysosomal storage diseases.
2. Description of the Prior Art
Lysosomes and Lysosomal Storage Diseases
Lysosomes are organelles in eukaryotic cells that function in the degradation of macromolecules into component parts that can be reused in biosynthetic pathways or discharged by the cell as waste. Normally, these macromolecules are broken down by enzymes known as lysosomal enzymes or lysosomal hydrolases. However, when a lysosomal enzyme is not present in the lysosome or does not function properly, the enzymes specific macromolecular substrate accumulates in the lysosome as “storage material” causing a variety of diseases, collectively known as lysosomal storage diseases.
Lysosomal storage diseases can cause chronic illness and death in hundreds of individuals each year. There are approximately 50 known lysosomal storage diseases, e.g., Pompe Disease, Hurler Syndrome, Fabry Disease, Maroteaux-Lamy Syndrome (mucopolysaccharidosis VI), Morquio Syndrome (mucopolysaccharidosis IV), Hunter Syndrome (mucopolysaccharidosis II), Farber Disease, Acid Lipase Deficiency, Krabbe Disease, and Sly Syndrome (mucopolysaccharidosis VII). In each of these diseases, lysosomes are unable to degrade a specific compound or group of compounds because the enzyme that catalyzes a specific degradation reaction is missing from the lysosome, is present in low concentrations in the lysosome, or is present at sufficient concentrations in the lysosome but is not functioning properly.
Lysosomal storage diseases have been studied extensively and the enzymes (or lack thereof) responsible for particular diseases have been identified. Most of the diseases are caused by a deficiency of the appropriate enzyme in the lysosome, often due to mutations or deletions in the structural gene for the enzyme. For some lysosomal storage diseases, the enzyme deficiency is caused by the inability of the cell to target and transport the enzymes to the lysosome, e.g., I-cell disease and pseudo-Hurler polydystrophy.
Lysosomal Storage diseases have been studied extensively and the enzymes (or lack thereof) responsible for particular diseases have been identified (Scriver, Beaudet, Sly, and Vale, eds., The Metabolic Basis of Inherited Disease, 6th Edition, 1989, Lysosomal Enzymes, Part 11, Chapters 61-72, pp. 1565-1839). Within each disease, the severity and the age at which the disease presents may be a function of the amount of residual lysosomal enzyme that exists in the patient.
Lysosomal Targeting Pathway
The lysosomal targeting pathways have been studied extensively and the process by which lysosomal enzymes are synthesized and transported to the lysosome has been well described. Komfeld, S. (1986). “Trafficking of lysosomal enzymes in normal and disease states.”
Journal of Clinical Investigation
77: 1-6 and Komfeld, S. (1990). “Lysosomal enzyme targeting.”
Biochem. Soc. Trans
. 18: 367-374. Generally, lysosomal enzymes are synthesized by membrane-bound polysomes in the rough endoplastic reticulum (“RER”) along with secretory glycoproteins. In the RER, lysosomal enzymes acquire N-linked oligosaccharides by the en-bloc transfer of a preformed oligosaccharide from dolichol phosphate containing 2 N-acetylglucosamine, 9-mannose and 3-glucose. Glycosylated lysosomal enzymes are then transported to the Golgi apparatus along with secretory proteins. In the cis-Golgi or intermediate compartment lysosomal enzymes are specifically and uniquely modified by the transfer of GlcNAc-phosphate to specific mannoses. In a second step, the GlcNAc is removed thereby exposing the mannose 6-phosphate (“M6P”) targeting determinant. The lysosomal enzymes with the exposed M6P binds to M6P receptors in the trans-Golgi and is transported to the endosome and then to the lysosome. In the lysosome, the phosphates are rapidly removed by lysosomal phosphatases and the mannoses are removed by lysosomal mannosidases (Einstein, R. and Gabel, C. A. (1991). “Cell- and ligand-specific deposphorylation of acid hydrolases: evidence that the mannose 6-phosphate is controlled by compartmentalization.”
Journal of Cell Biology
112: 81-94).
The synthesis of lysosomal enzymes having exposed M6P is catalyzed by two different enzymes, both of which are essential if the synthesis is to occur. The first enzyme is UDP-N-acetylglucosamine: lysosomal enzyme N-Acetylglucosamine-1-phosphotransferase (“GlcNAc-phosphotransferase”) (E.C. 2.7.8.17). GlcNAc-phosphotransferase catalyzes the transfer of N-acetylglucosamine-1-phosphate from UDP-GlcNAc to the 6 position of a &agr;1,2-linked mannoses on the lysosonial enzyme. The recognition and addition of N-acetylgluocosamine-1-phosphate to lysosomal hydrolases by GlcNAc-phosphotransferase is the critical and determining step in lysosomal targeting. The second step is catalyzed by N-acetylglucosamine-1-phosphodiester &agr;-N-Acetylglucosaminidase (“phosphodiester &agr;-GlcNAcase”) (E.C. 3.1.4.45). Phosphodiester &agr;-GlcNAcase catalyzes the removal of N-Acetylglucosamine from the GlcNAc-phosphate modified lysosomal enzyme to generate a terminal M6P on the lysosomal enzyme. Preliminary studies of these enzymes have been conducted. Bao et al., in
The Journal of Biological Chemistry
, Vol. 271, Number 49, Issue of Dec. 6, 1996, pp. 31437-31445, relates to a method for the purification of bovine UDP-N-acetylglucosamine: Lysosomal enzyme N-Acetylglucosamine-1-phosphotransferase and proposes a hypothetical subunit structure for the protein. Bao et al., in
The Journal of Biological Chemistry
, Vol. 271, Number 49, Issue of Dec. 6, 1996, pp. 31446-31451, relates to the enzymatic characterization and identification of the catalytic subunit for bovine UDP-N-acetylglucosamine: Lysosomal enzyme N-Acetylglucosamine-1-phosphotransferase. Kornfeld et al., in
The Journal of Biological Chemistry
, Vol. 273, Number 36, Issue of Sep. 4, 1998, pp. 23203-23210, relates to the purification and multimeric structure of bovine N-Acetylglucosamine-1-phosphodiester &agr;-N-Acetylglucosaminidase. However, the proprietary monoclonal antibodies required to isolate these proteins have not been made available to others and the protein sequences for the enzymes used in these preliminary studies have not been disclosed.
Although the lysosomal targeting pathway is known and the naturally occurring enzymes involved in the pathway have been partially studied, the enzymes responsible for adding M6P in the lysosomal targeting pathway are difficult to isolate and purify and are poorly understood. A better understanding of the lysosomal targeting pathway enzymes and the molecular basis for their action is needed to assist with the development of effective techniques for the utilization of these enzymes in methods for the treatment of lysosomal storage diseases, particularly in the area of targeted enzyme replacement therapy.
Treatment of Lysosomal Storage Diseases
Lysosomal storage diseases caused by the lack of enzymes can in theory be treated using enzyme replacement therapy, i.e., by administering isolated and purified enzymes to the patient to treat the disease. However, to be effective, the lysosomal enzyme administered must be internalized by the cell and transported to the lysosome. Naturally occurring enzymes and their recombinant equivalents, however, have been of limited value in enzyme replacement therapy because the purified or recombinant lysosomal enzymes do not contain adequate amounts of exposed M6P, or contain undesirable oligosaccharides which mediates their destruction. Without sufficient M6P, the administered lysosomal enzyme cannot efficiently bin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for producing highly phosphorylated lysosomal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for producing highly phosphorylated lysosomal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for producing highly phosphorylated lysosomal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3033513

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.