Methods for preparing phthalocyanine compositions

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C540S139000, C540S140000

Reexamination Certificate

active

06476219

ABSTRACT:

Copending application U.S. Ser. No. 10/072,241, filed concurrently herewith, entitled “Phthalocyanine Compositions,” with the named inventors Jeffery H. Banning, Nan-Xing Hu, James D. Mayo, James M. Duff, Roger E. Gaynor, Rosa M. Duque, and Nam S. Ro, the disclosure of which is totally incorporated herein by reference, discloses compounds of the formula
wherein M is an atom or group of atoms capable of bonding to the central cavity of a phthalocyanine molecule, wherein axial ligands optionally can be attached to M.
Copending application U.S. Serial No. 10/072,210, filed concurrently herewith, entitled “Ink Compositions Containing Phthalocyanines,” with the named inventors Donald R. Titterington, Michael B. Meinhardt, Jeffery H. Banning, James D. Mayo, James M. Duff, Roger E. Gaynor, and Harold R. Frame, the disclosure of which is totally incorporated herein by reference, discloses a phase change ink composition comprising a phase change ink carrier and a colorant compound of the formula
wherein M is an atom or group of atoms capable of bonding to the central cavity of a phthalocyanine molecule, wherein axial ligands optionally can be attached to M. Also disclosed are printing processes using the phase change inks.
BACKGROUND OF THE INVENTION
The present invention is directed to methods for preparing colorant compounds. More specifically, the present invention is directed to processes for preparing phthalocyanine colorant compounds particularly suitable for use in hot melt or phase change inks. One embodiment of the present invention is directed to a process for preparing a colorant of the formula
wherein M is an atom or group of atoms capable of bonding to the central cavity of a phthalocyanine molecule, wherein axial ligands optionally can be attached to M, which comprises (a) reacting 3-n-pentadecylphenol with 4-nitrophthalonitrile in the presence of a base to form an alkylarylether adduct of phthalonitrile; and (b) reacting the alkylarylether adduct of phthalonitrile with either (i) a metal compound, or (ii) an ammonia-releasing compound in the presence of an alkanolamine solvent, or (iii) mixtures of (i) and (ii), to form the colorant.
In general, phase change inks (sometimes referred to as “hot melt inks”) are in the solid phase at ambient temperature, but exist in the liquid phase at the elevated operating temperature of an ink jet printing device. At the jet operating temperature, droplets of liquid ink are ejected from the printing device and, when the ink droplets contact the surface of the recording substrate, either directly or via an intermediate heated transfer belt or drum, they quickly solidify to form a predetermined pattern of solidified ink drops. Phase change inks have also been used in other printing technologies, such as gravure printing, as disclosed in, for example, U.S. Pat. No. 5,496,879 and German Patent Publications DE 4205636AL and DE 4205713AL, the disclosures of each of which are totally incorporated herein by reference.
Phase change inks for color printing typically comprise a phase change ink carrier composition which is combined with a phase change ink compatible colorant. In a specific embodiment, a series of colored phase change inks can be formed by combining ink carrier compositions with compatible subtractive primary colorants. The subtractive primary colored phase change inks can comprise four component dyes, namely, cyan, magenta, yellow and black, although the inks are not limited to these four colors. These subtractive primary colored inks can be formed by using a single dye or a mixture of dyes. For example, magenta can be obtained by using a mixture of Solvent Red Dyes or a composite black can be obtained by mixing several dyes. U.S. Pat. Nos. 4,889,560, 4,889,761, and 5,372,852, the disclosures of each of which are totally incorporated herein by reference, teach that the subtractive primary colorants employed can comprise dyes from the classes of Color Index (C.I.) Solvent Dyes, Disperse Dyes, modified Acid and Direct Dyes, and Basic Dyes. The colorants can also include pigments, as disclosed in, for example, U.S. Pat. No. 5,221,335, the disclosure of which is totally incorporated herein by reference. U.S. Pat. No. 5,621,022, the disclosure of which is totally incorporated herein by reference, discloses the use of a specific class of polymeric dyes in phase change ink compositions.
Phase change inks have also been used for applications such as postal marking and industrial marking and labelling.
Phase change inks are desirable for ink jet printers because they remain in a solid phase at room temperature during shipping, long term storage, and the like. In addition, the problems associated with nozzle clogging as a result of ink evaporation with liquid ink jet inks are largely eliminated, thereby improving the reliability of the ink jet printing. Further, in phase change ink jet printers wherein the ink droplets are applied directly onto the final recording substrate (for example, paper, transparency material, and the like), the droplets solidify immediately upon contact with the substrate, so that migration of ink along the printing medium is prevented and dot quality is improved.
Compositions suitable for use as phase change ink carrier compositions are known. Some representative examples of references disclosing such materials include U.S. Pat. Nos. 3,653,932, 4,390,369, 4,484,948, 4,684,956, 4,851,045, 4,889,560, 5,006,170, 5,151,120, 5,372,852, 5,496,879, European Patent Publication 0187352, European Patent Publication 0206286, German Patent Publication DE 4205636AL, German Patent Publication DE 4205713AL, and PCT Patent Application WO 94/04619, the disclosures of each of which are totally incorporated herein by reference. Suitable carrier materials can include paraffins, microcrystalline waxes, polyethylene waxes, ester waxes, fatty acids and other waxy materials, fatty amide containing materials, sulfonamide materials, resinous materials made from different natural sources (tall oil rosins and rosin esters, for example), and many synthetic resins, oligomers, polymers, and copolymers.
Colorants suitable for hot melt or phase change ink compositions include members of the phthalocyanine class of chromophore which have been appropriately modified by chemical substitution to make them soluble in the organic carrier composition. Many such phthalocyanine derivatives are known to have a good cyan color, and absorb light strongly in the wavelength region of from about 600 to about 700 nanometers. Further, their well-known high chemical, thermal, and photochemical stability make them particularly attractive for printing applications where archival print properties are desired. Most phthalocyanines soluble in organic media fall into three generic classes: axially-substituted phthalocyanines, tetra-peripherally-substituted phthalocyanines, and octa-peripherally-substituted phthalocyanines.
The first class is illustrated by the following structure:
In the most well-known examples of this class, M is tetravalent silicon, germanium, or tin and L
1
and L
2
can each be either bulky alkylsiloxy groups, such as —OSiR
3
(wherein R is, for example, n-hexyl) or long-chain oxyhydrocarbon groups. See, for example, “Synthesis and photochemical properties of aluminum, gallium, silicon and tin naphthalocyanines,” W. E. Ford, M. A. Rodgers, L. A. Schechtman, J. R. Sounik, B. D. Rihter, and M. E. Kenney,
Inorg. Chem.,
31 (1992), 3371;“A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrically-generated chemiluminescence,” B. L. Wheeler, G. Nagasubramanian, A. J. Bard, L. A. Schechtman, and M. E. Kenney,
J. Am. Chem. Soc.,
106 (1984), 7404;the disclosures of each of which are totally incorporated herein by reference. Also reported are examples in which M=Si and L
1
and L
2
are dendritic groups; see, for example, “Hyperbranched macromolecules via a novel double-stage convergent growth approach,” K. L. Wooley, C. J. Hawker, and J. M. J. Frechet,
J. Am. Chem. Soc.,
113 (1991), 4252, the discl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for preparing phthalocyanine compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for preparing phthalocyanine compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for preparing phthalocyanine compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2934579

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.