Methods for obtaining transfer factor from avian sources,...

Drug – bio-affecting and body treating compositions – Immunoglobulin – antiserum – antibody – or antibody fragment,... – Derived from – or present in – food product

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S130100, C424S184100, C424S201100, C424S227100, C424S204100, C435S041000, C530S300000, C530S350000

Reexamination Certificate

active

06468534

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to methods for generating antigen-specific transfer factor, compositions including such antigen-specific transfer factor, and uses of these compositions. In particular, the present invention relates to methods for generating antigen-specific transfer factor in an avian host and obtaining the antigen-specific transfer factor from eggs.
2. Background of Related Art
Many deadly pathogens are passed to humans from the animal kingdom. For example, monkeys are the sources of the type I human immunodeficiency virus (HIV-I), which causes acquired immune deficiency syndrome (AIDS) and monkeypox, which is similar to smallpox; ground-dwelling mammals are believed to be the source of the Ebola virus; fruit bats and pigs are the source of the Nipah virus; the Hendra virus comes from horses; the “Hong Kong Flu” originated in chickens; and wild birds, especially ducks, are the sources of many of the deadly influenza viruses. Many diseases also have animal reservoirs. By way of example, mice carry Hanta virus, rats carry the Black Plague, and deer carry Lyme disease.
The Immune System
The immune systems of vertebrates are equipped to recognize and defend the body from invading pathogenic organisms, such as parasites, bacteria, fungi, and viruses. Vertebrate immune systems typically include a cellular component and a noncellular component.
The cellular component of an immune system includes the so-called lymphocytes, or white blood cells, of which there are several types. It is the cellular component of a mature immune system that typically mounts a primary, nonspecific response to invading pathogens, as well as being involved in a secondary, specific response to pathogens.
In the primary, or initial, response to an infection by a pathogen, white blood cells that are known as phagocytes locate and attack the invading pathogens. Typically, a phagocyte will internalize, or “eat” a pathogen, then digest the pathogen. In addition, white blood cells produce and excrete chemicals in response to pathogenic infections that are intended to attack the pathogens or assist in directing the attack on pathogens.
Only if an infection by invading pathogens continues to elude the primary immune response is a specific, secondary immune response to the pathogen needed. As this secondary immune response is typically delayed, it is also known as “delayed-type hypersensitivity”. A mammal, on its own, will typically not elicit a secondary immune response to a pathogen until about seven (7) to about fourteen (14) days after becoming infected with the pathogen. The secondary immune response is also referred to as an acquired immunity to specific pathogens. Pathogens have one or more characteristic proteins, which are referred to as “antigens”. In a secondary immune response, white blood cells known as B lymphocytes, or “B-cells”, and T lymphocytes, or “T-cells”, “learn” to recognize one or more of the antigens of a pathogen. The B-cells and T-cells work together to generate proteins called “antibodies”, which are specific for one or more certain antigens on a pathogen.
The T-cells are primarily responsible for the secondary, or delayed-type hypersensitivity, immune response to a pathogen or antigenic agent. There are three types of T-cells: T-helper cells, T-suppressor cells, and antigen-specific T-cells, which are also referred to as cytotoxic (meaning “cell-killing”) T-lymphocytes (“CTLs”), or T-killer cells. The T-helper and T-suppressor cells, while not specific for certain antigens, perform conditioning functions (e.g., the inflammation that typically accompanies an infection) that assist in the removal of pathogens or antigenic agents from an infected host.
Antibodies, which make up only a part of the noncellular component of an immune system, recognize specific antigens and, thus, are said to be “antigen-specific”. The generated antibodies then basically assist the white blood cells in locating and eliminating the pathogen from the body. Typically, once a white blood cell has generated an antibody against a pathogen, the white blood cell and all of its progenitors continue to produce the antibody. After an infection is eliminated, a small number of T-cells and B-cells that correspond to the recognized antigens are retained in a “resting” state. When the corresponding pathogenic or antigenic agents again infect the host, the “resting” T-cells and B-cells activate and, within about forty-eight (48) hours, induce a rapid immune response. By responding in this manner, the immune system mounts a secondary immune response to a pathogen, the immune system is said to have a “memory” for that pathogen.
Mammalian immune systems are also known to produce smaller proteins, known as “transfer factors,” as part of a secondary immune response to infecting pathogens. Transfer factors are another noncellular part of a mammalian immune system. Antigen-specific transfer factors are believed to be structurally analogous to antibodies, but on a much smaller molecular scale. Both antigen-specific transfer factors and antibodies include antigen-specific cites and both include highly conserved regions that interact with receptor sites on their respective effector cells. In transfer factor and antibody molecules, a third, “linker”, region connects the antigen-specific cites and the highly conserved regions.
The Role of Transfer Factor in the Immune System
Transfer factor is a low molecular weight isolate of lymphocytes. Narrowly, transfer factors may have specificity for single antigens. U.S. Pat. Nos. 5,840,700 and 5,470,835, both of which issued to Kirkpatrick et al. (hereinafter collectively referred to as “the Kirkpatrick Patents”), disclose the isolation of transfer factors that are specific for certain antigens. More broadly, “specific” transfer factors have been generated from cell cultures of monoclonal lymphocytes. Even if these transfer factors are generated against a single pathogen, they have specificity for a variety of antigenic sites of that pathogen. Thus, these transfer factors are said to be “pathogen-specific” rather than antigen-specific. Similarly, transfer factors that are obtained from a host that has been infected with a certain pathogen are pathogen-specific. Although such preparations are often referred to in the art as being “antigen-specific” due to their ability to elicit a secondary immune response when a particular antigen is present, transfer factors having different specificities may also be present. Thus, even the so-called “antigen-specific”, pathogen-specific transfer factor preparations may be specific for a variety of antigens.
Additionally, it is believed that antigen-specific and pathogen-specific transfer factors may cause a host to elicit a delayed-type hypersensitivity immune response to pathogens or antigens for which such transfer factor molecules are not specific. Transfer factor “draws” at least the non-specific T-cells, the T-inducer and T-suppressor cells, to an infecting pathogen or antigenic agent to facilitate a secondary, or delayed-type hypersensitivity, immune response to the infecting pathogen or antigenic agent.
Typically, transfer factor includes an isolate of proteins obtained from immunologically active mammalian sources and having molecular weights of less than about 10,000 daltons (D). It is known that transfer factor, when added either in vitro or in vivo to mammalian immune cell systems, improves or normalizes the response of the recipient mammalian immune system.
The immune systems of newborns have typically not developed, or “matured”, enough to effectively defend the newborn from invading pathogens. Moreover, prior to birth, many mammals are protected from a wide range of pathogens by their mothers. Thus, many newborn mammals cannot immediately elicit a secondary response to a variety of pathogens. Rather, newborn mammals are typically given secondary immunity to pathogens by their mothers. One way in which mothers are known to boost the immune systems of newborns is by provid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for obtaining transfer factor from avian sources,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for obtaining transfer factor from avian sources,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for obtaining transfer factor from avian sources,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2925672

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.