Methods for multiple direct label probe detection of...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100, C536S024300

Reexamination Certificate

active

06277569

ABSTRACT:

RELATED APPLICATIONS
This application is a continuation-in-part of earlier filed U.S. patent application Ser. No. 585,876 filed Sep. 20, 1990 by M. L. Bittner, L. E. Morrison and M. S. Legator.
FIELD OF THE INVENTION
The present invention relates to the detection and identification of chromosomes or regions of chromosomes by hybridization of a multiplicity of different chromosome-specific probes. In particular, this invention relates to in situ hybridization of these chromosome specific probes to the target chromosome. The present invention also relates to the detection of chromosomes or regions of chromosomes using fluorescently labeled reagents.
BACKGROUND OF THE INVENTION
Probes containing DNA sequences which are complementary to target DNA sequences of specific individual whole chromosomes or regions of chromosomes of a multi-chromosomal genome are known (see, for example, Pinkel et al. in “Fluorescence in situ hybridization with human chromosome-specific libraries: Detection of trisomy 21 and translocations of chromosome 4” at
Proc. Nat'l Acad. Sci. USA
85:9138-9142, December 1988; Manuelidis in “Chromosomal Localization of Complex and Simple Repeated Human DNA's”
Chromosoma
66:23-32, 1978).
The vast majority of prior art probes prepared from such sequences were indirect label probes and so required post-hybridization processing. Thus, for example, such probes were derivatized with biotin, and, following the hybridization procedure, steps were pursued to build a sandwich-like structure of fluorescein-labeled avidin and biotinylated anti-avidin antibodies. In contrast, the direct label probes of this invention require only one probe penetration step of a slide mounted specimen during an in situ hybridization procedure.
Prior art methods for labeling such prior art chromosome-specific complementary DNA sequences present difficulties in controlling the number of label moieties attached to individual sequences.
Improved probe compositions comprised of (a) fluorophore labels which are easily and accurately directly detected, and (b) DNA segments which are complementary to specific chromosomal DNA segments would be very useful as chromosome specific stains in in situ hybridization assays. The present invention provides both such probes and efficient, reliable methods for their preparation and use.
SUMMARY OF THE INVENTION
The present invention provides: (1)probe compositions for the in situ detection of a chromosome or a region of a chromosome, (2)methods for the preparation of such probe compositions, and (3)methods for the use of such probe compositions for the in situ detection of a chromosome or a region of a chromosome.
This invention provides probe compositions for in situ detection of a preselected chromosome or region of a chromosome comprising multiple DNA segments complementary to different portions of the chromosome or chromosome region to be detected where, in the probe compositions, DNA segments include multiple fluorescent labels covalently linked thereto.
The invention includes a probe composition that contains unhybridized DNA segments which are essentially complementary to DNA base sequences existing in different portions of the chromosome or chromosome region to be detected and which contain a plurality of cytosine bases (i.e., deoxycytidine nucleotides). A number of the cytosine bases have a fluorescent label covalently bonded thereto. The number of fluorescently labeled cytosine bases is sufficient to generate a detectable fluorescent signal while the individual so labeled DNA segments essentially retain their specific complementary binding (hybridizing) properties with respect to the chromosome or chromosome region to be detected.
The invention also includes a method for making a probe composition for in situ detection of a particular preselected chromosome or a region of such chromosome comprising:
(a) disrupting (that is, fragmenting) DNA complementary to the chromosome, or the region of the chromosome, into fragments,
(b) transaminating the DNA fragments, and
(c) covalently linking a fluorescent dye to the transaminated DNA fragments.
More specifically, the invention includes a method for preparing a probe composition for in situ detection of a preselected chromosome or region of a chromosome comprising:
(a) transaminating with a linking group a number of deoxycytidine nucleotides contained in unhybridized DNA base sequences or segments that are essentially representative of complementary base target sequences existing in the chromosome or chromosome region to be detected; and
(b) covalently bonding a fluorescent label to at least a portion of the transaminated deoxycytidine bases, the portion of deoxycytidine bases having fluorescent labels covalently bonded thereto being sufficient to generate a detectable fluorescent signal while essentially retaining the specific complementary binding properties of the transaminated bases with respect to the chromosome or the chromosome region to be detected.
In addition, the invention provides a method for in situ detection of a preselected chromosome or a region of the chromosome comprising:
(a) adding an excess of blocking DNA to an inventive probe composition preferably under hybridizing conditions to bond with nonspecific binding DNA in the probe composition, thereby forming a blocked probe composition,
(b) contacting the blocked probe composition under hybridizing conditions with the chromosome or the chromosome region to be detected, and
(c) detecting the binding of the blocked probe composition to the chromosome or the chromosome region to be detected by fluorescent techniques.
It is an additional object of the present invention to provide probe compositions that are directly labeled with fluorescent dyes. The use of such directly labeled probe compositions avoids the need for detailed and lengthy post-hybridization procedures as required by the indirectly labeled prior art probe compositions using, for example, biotin labels, avidin, and biotinylated antiavidin antibodies. The inventive probe compositions permit the user to proceed immediately from the hybridization step to final washing and visualization, thereby reducing the necessary amount of assay time and labor. The number of reagents required to perform the assay is also reduced, resulting in enhanced simplicity of use and manufacturing.
It is a specific object of the present invention to provide a probe composition for the in situ detection of a preselected chromosome or a preselected region of a chromosome wherein the probe composition contains multiple DNA segments that are complementary to different portions of the chromosome or the chromosome region to be detected. The multiple DNA segments in the probe composition include multiple fluorescent labels that are covalently linked to the DNA segments. These fluorescent labels permit the DNA segments that hybridize with the chromosome or the chromosome region to be detected using fluorescent techniques. In a preferred embodiment, the fluorescent labels are covalently linked to a number of the deoxycytidine bases in the DNA segments through linking groups. The number of deoxycytidine bases having fluorescent labels is sufficient to generate a detectable fluorescent signal, while at the same time the specific binding properties of the labeled DNA segments are essentially retained with respect to the chromosome or the chromosome region to be detected.
It is also an object of this invention to detect preselected multiple chromosomes or regions of chromosomes. This is accomplished by labeling one library of DNA segments specific for one chromosome or chromosome region with one fluorescent label and labeling another library of DNA segments specific for another chromosome or chromosome region with another fluorescent label, such that the fluorescent labels can independently be detected by fluorescent techniques. DNA segments of each chromosome or chromosome region of interest are thus so labeled. Thus, combinations of such resulting probe compositions of this invention can be used to detect tw

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for multiple direct label probe detection of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for multiple direct label probe detection of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for multiple direct label probe detection of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2540645

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.