Drug – bio-affecting and body treating compositions – In vivo diagnosis or in vivo testing
Patent
1995-11-15
1999-07-20
Martinell, James
Drug, bio-affecting and body treating compositions
In vivo diagnosis or in vivo testing
424 931, 435 72, 435 71, 435 721, 435 6, C12N 1509, C12N 1579
Patent
active
059253339
ABSTRACT:
Methods for regulation of lipid and cholesterol uptake are described which are based on regulation of the expression or function of the SR-BI HDL receptor. The examples demonstrate that estrogen dramatically downregulates SR-BI under conditions of tremendous upregulation of the LDL-receptor. The examples also demonstrate the upregulation of SR-BI in rat adrenal membranes and other non-placental steroidogenic tissues from animals treated with estrogen, but not in other non-placental non-steroidogenic tissues, including lung, liver, and skin. Examples further demonstrate the uptake of fluorescently labeled HDL into the liver cells of animal, which does not occur when the animals are treated with estrogen.
REFERENCES:
patent: 3625214 (1971-12-01), Higuchi
patent: 4244946 (1981-01-01), River et al.
patent: 4305872 (1981-12-01), Johnston et al.
patent: 4316891 (1982-02-01), Guillemin et al.
patent: 4629784 (1986-12-01), Stammer
patent: 4789734 (1988-12-01), Pierschbacher
patent: 4792525 (1988-12-01), Rouslaghti et al.
patent: 4868116 (1989-09-01), Morgan et al.
patent: 4906474 (1990-03-01), Langer et al.
patent: 4925673 (1990-05-01), Steiner et al.
patent: 4980286 (1990-12-01), Morgan et al.
patent: 5585479 (1996-12-01), Hoke et al.
Abrams, et al., "Macrophages in Drosophila Embryos and L2 Cells Exhibit Scavenger Receptor-mediated Endocytosis", Proc. Natl. Acad. Sci. USA, 89:10375-10379 (1992).
Abumrad, et al., "Cloning of a Rat Adipocyte Membrane Protein Implicated in Binding or Transport of Long-chain Fatty Acids That Is Induced during Preadipocyte Differentiation," J. Biol. Chem., 268:17665-17668 (1993).
Acton, et al., "The Collagenous Domains of Macrophage Scavenger Receptors and Complement Component C1q Mediate Their Similar, But Not Identical, Binding Specificities for Polyanionic Ligands," J. Biol. Chem., 268:3530-3537 (1993).
Acton, et al., "Expression Cloning of SR-BI, a CD36-related Class B Scavenger Receptor," J. Biol. Chem., 269, 21003-21009 (1994).
Agrawal, et al., "Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus," Proc. Natl. Acad. Sci. USA, 85:7079-7083 (1988).
*Anderson & Dietschy, J. Biol. Chem., 256:7362 (1981).
Arai, et al., "Multiple Receptors for Modified Low Density Lipoproteins in Mouse Peritoneal Macrophages: Different Uptake Mechanisms for Acetylated and Oxidized Low Density Lipoproteins," Biochem. Biophys. Res. Commun., 159:1375-1382 (1989).
Aruffo, & Seed, "Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system," Proc. Natl. Acad. Sci. USA, 84:8573-8577 (1987).
Asch, et al., "Isolation of the Thrombospondin Membrane Receptor," J. Clin. Invest., 79:1054-1061 (1987).
Ashkenas, et al., "Structures and high and low affinity ligand binding properties of murine type I and type II macrophage scavenger receptors," J. Lipid Res., 34:983-1000 (1993).
Askew, et al., "Molecular Recognition with Convergent Functional Groups, Synthetic and Structural Studies with a Model Receptor for Nucleic Acid Components", J. Am. Chem. Soc., 111:1082-1090 (1989).
Baldini, et al., "Cloning of a Rab3 Isotype Predominately Expressed in Adipocytes", Proc. Natl. Acad. Sci. U.S.A., 89:5049-5052 (1992).
Basu, et al., "Independent Pathways for Secretion of Cholesterol and Apolipoprotein E by Macrophages", Science, 219:871-873 (1983).
Bickel, et al., "Rabbit Aortic Smooth Muscle Cells Express Inducible Macrophage Scavenger Receptor Messenger RNA that is Absent from Endothelial Cells", J. Clin. Invest., 90:1450-1457 (1992).
Blume, et al., "Triple Helix Formation by Purine-rich Oligonucleotides Trageted to the Human Dihydrofolate Reductase Prometer", Nucl. Acids. Res., 20:1777-1784 (1992).
*Bock, et al, 1992.
Brown & Goldstein, "Lipoprotein Metabolism in The Macrophage: Implications for Cholesterol Deposition in Atherosclerosis" Annu. Rev. Biochem., 52:223-261 (1983).
Calvo & Vega, "Identification, Primary Structure, and Distribution of CLA-1, a Novel Member of the CD36/LIMPII Gene Family", J. Biol. Chem., 268:18929:18935 (1993).
Charron, et al., "A Glucose Transport Protein Expressed Predominately in insulin-responsive Tissues", Proc. Natl. Acad. Sci. U.S.A., 86:2535-2539 (1989).
Chen, et al., "NPXY, a Swquence Often Found in Cytoplasmic Tails, Is Required for Coated Pit-mediated Internalization of the Low Density Lipoprotein Receptor", J. Biol. Chem., 265(6):3116-3123 (1990).
*Chung, et al. in Methods of Enzymology, Ed J.P. Segrest and J.J. Albers (Academic Press, Inc. Orlando, FL 1986) vol. 128, pp. 181-209.
Clackson, et al., "Making Antibory Fragments Using Phage Display Libraries", Nature, 352:624-628 (1991).
Cooney, et al., "Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in Vitro", Science, 241:456-459 (1988).
Crooke, "Progress Toward Oligonucleotide Therapeutics: Pharmacodynamic Properties", FASEB J., 7:533-539 (1993).
Cullen, Guide to Molecular Cloning Techniques: Use fo Eukaryotic Expression Technology in the Functional Analysis of Cloned Genes, Methods in Enzymology, 152:684-704 (1987).
Daugherty, et al., "Polymerase Chain Reaction the Cloning, CDR-grafting, and Rapid Expression of a Murine Monoclonal Antibody Directed Against the CD18 Component of Leukocyte Integrins", Nucleic Acids Research, 19(9):2471-2476 (1991).
De Rijke, et al., "Binding characteristics of scavenger receptors on liver endothelial and Kupffer cells for modified low-density lipoproteins," Biochem. J. 304:69-73 (1994).
Doi, et al., "Charged Collagen Struture Mediates the Recognition of Negatively Charged Macromolecules by Macrophage Scavenger Receptors", J. Biol. Chem., 268:2126-2133 (1993).
Duval-Valentin, et al., "Specific Inhibition of Transcription by Triple Helix-Forming Oligonucleotides," Proc. Natl. Acad. Sci. USA, 89:504-508 (1992).
Ellington & Szostak, "Selectin in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures", Nature, 355:850-852 (1992).
Endemann, et al. "CD36 Is a Receptor for Oxidized Low Density Lipoprotein", J. Biol. Chem., 268:11811-11816 (1993).
Faust & Krieger, "Expression of Specific High Capacity Mevalonate Transport in a Chinese Hamster Ovary Cell Variant", J. Biol. Chem., 262, 1996-2004 (1987).
Fraser, et al., "Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor", Nature, 364:343-346 (1993).
Freeman, et al., "Expression of type I and type II bovine scavenger receptors in Chinese hamster ovary cells: Lipid droplet accumulation and nonreciprocal cross competition by acetylated and oxidized low density lipoprotein", Proc. Natl. Acad. Sci. U.S.A., 88:4931-4935 (1991).
Fukasawa, et al., "Chinese Hamster Ovary Cells Expressing a Novel Type of Acetylated Low Density Lipoprotein Receptor: Isolation and Characterization", J. Biol. Chem., 270(4):1921-1927 (1995).
*Glass, et al., Proc. Natl. Acad. Sci. USA, 80, 5435 (1983).
*Glass, et al., J. Biol. Chem., 260:744 (1985).
*Goldstein, et al., in the Metabolic and Molecular Bases of Inherited Disease, Scriver, et al. (McGraw-Hill, NY 1995), pp. 1981-2030.
Goldstein, et al., "Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition", Proc. Natl. Acad. Sci. U.S.A., 76:333-337 (1979).
Goldstein, et al., "Receptor-Mediated Endocytosis of Low-Density Lipoprotein in Cultured Cells", Methods Enzymol., 98:241-260 (1993).
Greenwalt, et al., "Membrane Glycoprotein CD36: A Review of Its Roles in Adherence, Signal Transduction, and Transfusion Medicine", Blood, 80:1105-1115 (1992).
Gregoriadis, Chapter 14: "Liposomes", Drug Carriers in Biology and Medicine pp. 287-341 (Academic Press, 1979).
Grigoriev, et al., "A Triple Helix-forming Oligonucleotide-Intercalator Conjugate Acts as a Transcriptional Repressor via Inhibition of NF KB Binding to Interleukin-2 receptor .alpha.-Regulatory Sequence", J. Biol. Chem., 267:3389-3395 (1992).
Haberland, et al., "Two Distinct Receptors Account for Recognition of Maleyl-Albumin in Human Monocytes during differentiation In Vi
Acton Susan L.
Hobbs Helen Haskell
Krieger Monty
Landschulz Katherine Tallman
Rigotti Attilio
Board of Regents , The University of Texas System
Hauda Karen M.
Martinell James
Massachusetts Institute of Technology
LandOfFree
Methods for modulation of lipid uptake does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for modulation of lipid uptake, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for modulation of lipid uptake will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1319805