Methods for modulation and inhibition of telomerase

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S043000, C514S048000

Reexamination Certificate

active

06593306

ABSTRACT:

BACKGROUND OF THE INVENTION
A. Field of the Invention
The present invention relates generally to the field of molecular biology. More particularly, certain embodiments concern methods and compositions useful in modulating or inhibiting human telomerase activity. In certain embodiments, the invention concerns the use of these agents in treatment of proliferative cell disorders, particularly for cancers whose proliferation is determined by processive telomerase activity.
B. Description of Related Art
Telomeres play an important role in chromosome organization and stability. Human telomerase is a terminal transferase that adds TTAGGG units onto the telomere end. In general, telomerase activity is not detected in normal somatic cells leading to the implication of telomerase in cancer and the impetus to develop agents that selectively target telomerase activity.
1. Genomic Instability of Cancer Cells
One of the general characteristics of cancer cells is genomic instability. Though it is still unclear what causes this instability, a hypothesis gaining increasing attention is that free chromosome ends, either from chromosome breakage or from loss of the telomere sequences which cap the ends, are prone to illegitimate recombination events. Thus, telomeres provide stability to the chromosomes. However, there appears to be a gradual loss of telomere sequences with each cell division, perhaps because of the end-replication problem. Tumor cells have shortened telomeres, but they also possess greatly elevated levels of the enzyme telomerase to overcome the end-replication problem, while normal cells do not. Thus, telomerase is an attractive-target for new anti-cancer agents because of the expected selectivity for neoplastic cells.
2. Telomeres
Telomeres consist of simple DNA repeats at the end of eukaryotic chromosomes and the proteins that bind specifically to those sequences in whole cells (Blackburn, 1991; Zakian, 1989). Telomeric DNA sequences and structures are conserved among widely divergent eukaryotes. The essential telomeric DNA consists of a stretch of a G-rich tandemly repeated sequence. Human and other vertebrate telomeres are based on TTAGGG repeat units. The telomere provides a protective “cap” for the end of the chromosome. Broken chromosomes and free DNA ends are susceptible to end-to-end fusion leading to dicentric, ring or other unstable chromosome forms, and to exonucleolytic degradation (Haber, 1984; Mann, 1983; McClintock, 1941; McClintock, 1942; Roth, 1988). By protecting against these events, telomeres prevent loss of genetic information from sub-telomeric regions of the chromosome.
Telomeres, the ends of eukaryotic chromosomes, are composed of tandemly repeated guanine-rich sequences which have an important role in chromosome organization and stability. However, due to the nature of DNA synthesis, the 5′ ends of telomeres shorten with each round of replication leaving a 3′ overhang that is subject to degradation. This has been described as the “end-replication” problem of linear chromosomes (Watson, 1972; Olovnikov, 1973). The end-replication problem can be overcome by addition of nucleotides to the 3′ end of the telomere. A telomere terminal transferase (telomerase) activity was initially discovered in Tetrahymena (Greider & Backburn, 1985). Telomerase activity has since been found in other ciliates (Zahler & Prescott, 1988; Shippen-Lentz & Blackburn, 1989), Xenopus (Mantell & Greider, 1994), yeast (Cohn & Blackburn, 1995), mouse (Prowse et al., 1993), and human cells (Morin, 1989). Telomerase is a ribonucleoprotein in which the internal RNA component serves as a template for directing the appropriate telomeric sequences onto the 3′ end of a telomeric primer. The cloning (Greider & Blackburn, 1989) and secondary structure determinations of the Tetrahymena telomerase RNA have determined the template portion of the RNA which has suggested a model for the mechanism of telomerase activity. Telomerase is thought to act by: 1) Telomerase binding to the 3′ single-stranded overhang of the telomere (TTAGGG in humans) which base pairs with the complementary bases of the RNA component of telomerase, 2) Nucleotide addition onto the 3′ end of the telomere by telomerase using its RNA component as a template, and 3) Dissociation of the newly synthesized telomeric DNA from the RNA template and repositioning to allow for the next round of polymerization. This last step is called the translocation step.
The variety of secondary structures formed by the guanine-rich telomeric sequences involving G-quartets or hairpins(Guschlbauer, 1990; Williamson, 1994) may have an affect on telomerase activity. For example, there is evidence that the G-tetraplex structures formed by telomeric sequences may hinder initial telomerase binding (Zahler et al., 1991). On the other hand, it has been proposed that G-tetraplex formation may actually facilitate the translocation step.
G-quartet structures may also have a role in telomere function. For example, it has been shown that a variety of proteins will preferentially bind to G-quartet structures (Williamson, 1994). Also, the interaction between guanine-rich DNA strands may be involved in the association of chromosomes seen in cells in the presence of varying concentrations of Na
+
(Diaz & Lewis, 1975). The function of chromosomal association is unknown but it has been proposed that it is important in such functions as homologous pairing involved in meiosis (Sen & Gilbert, 1988). Recently, a yeast nuclease (Kem1p) was found to specifically recognize and cut only G-quartet structures (Liu & Gilbert, 1994). Deletion of this enzyme was shown to cause telomere shortening, cellular senescence, and blockage in the pachytene stage of meiosis in yeast (Bahler et al., 1994; Tishkoff et al., 1995; Liu et al., 1995).
Another possible function of telomeres has sparked a great deal of interest in cancer research. It has been recently proposed that telomere length may serve as a “mitotic clock” (Harley, 1995; Shay, 1995). Normal cells in which telomeres shorten to a critical length become senescent (Allsopp et al., 1992; Harley, 1991). In contrast, immortal cancer cells have an unlimited replicative capacity. Due to the findings that telomerase activity is present in a variety of tumor cells, (Chadeneau et al., 1995; Counter et al., 1994; Counter et al., 1995; Kim et al., 1994) it appears that activation of telomerase is one link to cellular immortality. This makes inhibition of telomerase an ideal strategy for anti-cancer therapy. A number of nucleoside reverse transcriptase inhibitors show anti-telomerase activity in human and Tetrahymena (Strahl & Blackburn, 1994; Strahl & Blackburn, 1996).
3. Chromosome End Replication Problem
Telomeres play a critical role in allowing the end of the linear chromosomal DNA to be replicated completely without the loss of terminal bases at the 5′-end of each strand. Watson (1972) and Olovnikov (1971, 1973) independently described the “end-replication” problem, i.e., the inability of DNA polymerase to replicate fully the ends of a linear DNA molecule. All known DNA polymerases require a primer to initiate polymerization that proceeds in 5′→3′ direction. After degradation of the RNA primers, filling-in of internal gaps, and ligation events, the parental strand remains incompletely copied. Thus, in the absence of mechanisms to overcome the end-replication problem, the 5′ end of the newly synthesized DNA in each duplex is shortened following every round of DNA replication. The 3′ single stranded overhang, if not degraded, is converted to a double stranded deletion in the subsequent generation.
4. Telomerase
Immortal cells appear to overcome the end-replication problem by using telomerase to add telomeric DNA repeats to chromosomal ends. Because its mechanism of action involves the copying of an RNA template into DNA, telomerase can be classified as a reverse transcriptase. However, unlike typical reverse transcriptases from retroviruses or lower eukaryotes,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for modulation and inhibition of telomerase does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for modulation and inhibition of telomerase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for modulation and inhibition of telomerase will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3044023

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.