Methods for making spring interconnect structures

Coating processes – Electrical product produced – Integrated circuit – printed circuit – or circuit board

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06491968

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an interconnection (contact) element suitable for effecting pressure connections between electronic components and is particularly useful for contacting semiconductor packages or for contacting a semiconductor directly.
2. Description of Related Art
Interconnection or contact elements may be used to connect devices of an electronic component or one electronic component to another electronic component. For example, an interconnection element may be used to connect two circuits of an integrated circuit chip or including an application specific integrated circuit (ASIC). Interconnection elements may also be used to connect the integrated circuit chip to a chip package suitable for mounting on a printed circuit board of a computer or other electronic device. Interconnection elements may further be used to connect the integrated circuit chip to a test device such as a probe card assembly or other printed circuit board (PCB) to test the chip.
Generally, interconnection or contact elements between electronic components can be classified into at least the two broad categories of “relatively permanent” and “readily demountable.”
An example of a “relatively permanent” interconnection element is a wire bond. Once two electronic components are connected to one another by a bonding of an interconnection element to each electronic component, a process of unbending must be used to separate the components. A wire bond interconnection element, such as between an integrated circuit chip or die and inner leads of a chip or package (or inner ends of lead frame fingers) typically utilizes a “relatively permanent” interconnection element.
One example of a “readily demountable” interconnection element is the interconnection element between rigid pins of one electronic component received by resilient socket elements of another electronic component, for example, a spring-loaded LGA socket or a zero-insertion force socket. A second type of a “readily demountable” interconnection element is an interconnection element that itself is resilient or spring-like or mounted in or on a spring or resilient medium. An example of such an interconnection element is a tungsten needle of a probe card component. The interconnection element of a probe card component is typically intended to effect a temporary pressure connection between an electronic component to which the interconnection element is mounted and terminals of a second electronic component, such as a semiconductor device under test.
With regard to spring interconnection elements, generally, a minimum contact force is desired to effect reliable pressure contact to an electronic component (e.g., to terminals of an electronic component). For example, a contact (load) force of approximately 15 grams (including as little as 2 grams or less and as much as 150 grams or more, per terminal) may be desired to effect a reliable electrical pressure connection to a terminal of an electronic component.
A second factor of interest with regard to spring interconnection elements is the shape and metallurgy of the portion of the interconnection element making pressure connection to the terminal of the electronic component. With respect to the tungsten needle as a spring interconnection element, for example, the contact end is limited by the metallurgy of the element (i.e., tungsten) and, as the tungsten needle becomes smaller in diameter, it becomes commensurately more difficult to control or establish a desired shape at the contact end.
In certain instances, spring interconnection elements themselves are not resilient, but rather are supported by a resilient membrane. Membrane probes exemplify this situation, where a plurality of microbumps are disposed on a resilient membrane. Again, the technology required to manufacture such interconnection elements limits the design choices for the shape and metallurgy of the contact portion of the interconnection elements.
Commonly-owned U.S. patent application Ser. No. 08/152,812 filed Nov. 16, 1993 (now U.S. Pat. No. 5,476,211, issued Dec. 19, 1995), and its counterpart commonly-owned co-pending “divisional” U.S. patent application Ser. No. 08/457,479 filed Jun. 1, 1995, now U.S. Pat. No. 6,049,976, U.S. patent application Ser. No. 08/570,230 now U.S. Pat. No. 5,852,871 and U.S. patent application Ser. No. 09/245,499, filed Feb. 5, 1999 now pending, by Khandros, disclose methods for making spring interconnection elements. In a preferred embodiment, these spring interconnection elements, which are particularly useful for micro-electronic applications, involve mounting an end of a flexible elongate element (e.g., wire “stem” or “skeleton”) to a terminal on an electronic component, coating the flexible element and adjacent surface of the terminal with a “shell” of one or more materials. One of skill in the art can select a combination of thickness, yield strength, and elastic modulus of the flexible element and shell materials to provide satisfactory force-to-deflection characteristics of the resulting spring interconnection elements. Exemplary materials for the core element include gold. Exemplary materials for the coating include nickel and its alloys. The resulting spring interconnection element is suitably used to effect pressure, or demountable, interconnections between two or more electronic components, including semiconductor devices.
Commonly-owned, co-pending U.S. patent application Ser. No. 08/340,144, filed Nov. 15, 1994 now U.S. Pat. No. 5,917,707 and its corresponding PCT patent application Ser. No. PCT/US94/13373, filed Nov. 16, 1994 (WO95/14314, published May 16, 1995), both by Khandros and Mathieu, disclose a number of applications for the aforementioned spring interconnection elements, and also disclose techniques for fabricating tip structures at the ends of the interconnection elements. For example, a plurality of negative projections or holes, which may be in the form of inverted pyramids ending in apexes, are formed in the surface of a sacrificial layer (substrate). These holes are then filled with a contact structure comprising layers of material such as gold or rhodium and nickel. A flexible elongate element is mounted to the resulting tip structure and can be overcoated in the manner described hereinabove. In a final step, the sacrificial substrate is removed. The resulting spring interconnection element has a tip structure having controlled geometry (e.g., a sharp point) at its free end.
Commonly-owned, co-pending U.S. patent application Ser. No. 08/452,255, filed May 26, 1995 now U.S. Pat. No. 6,336,269 and its corresponding PCT patent application Ser. No. PCT/US95/14909, filed Nov. 13, 1995 (WO96/17278, published Jun. 6, 1996), both by Eldridge, Grube, Khandros and Mathieu, disclose additional techniques and metallurgies for fabricating tip structures on sacrificial substrates, as well as techniques for transferring a plurality of interconnection elements mounted thereto, en masse, to terminals of an electronic component.
Commonly-owned, co-pending U.S. patent application Ser. No. 08/788,740, filed Jan. 24, 1997 now U.S. Pat. No. 5,994,152 and its corresponding PCT patent application Ser. No. PCT/US96/08107, filed May 24, 1996 (WO96/37332, published Nov. 28, 1996), both by Eldridge, Khandros and Mathieu, disclose techniques whereby a plurality of tip structures are joined to a corresponding plurality of elongate interconnection elements that are already mounted to an electronic component. Also disclosed are techniques for fabricating “elongate” tip structures in the form of cantilevers. The cantilever tip structures can be tapered, between one end thereof and an opposite end thereof. The cantilever tip structures are suitable for mounting to already-existing (i.e., previously fabricated) raised interconnection elements extending (e.g., free-standing) from corresponding terminals of an electronic component.
Commonly-owned, co-pending U.S. patent application Ser. No. 08/819,464, filed Mar. 17, 1997, now abandoned, by Eldridge, Khan

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for making spring interconnect structures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for making spring interconnect structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for making spring interconnect structures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2944707

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.