Methods for making silicone-organic copolymers

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From silicon reactant having at least one...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S025000, C528S026000, C528S031000, C525S474000, C525S479000

Reexamination Certificate

active

06800713

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to improved methods for making silicone-organic copolymers. More particularly, the invention relates to methods for making silicone-organic copolymers with molecular weight control and without the need for protecting groups on organofunctional silicone intermediates.
BACKGROUND OF THE INVENTION
Silicone-organic copolymers are widely used, notably in the preparation of personal care products. Methods currently known in the art for making these copolymers are often cumbersome, time consuming and expensive, if they work at all, as a great deal of care must be taken to insure that the properties of these materials meet the rigid specifications usually required, including high clarity and optimal strength. Industry is constantly seeking new materials in this class and improved ways of preparing them.
A recent effort in this regard is disclosed by Barr et al. in U.S. Pat. No. 6,051,216 and in the corresponding PCT Publication No. WO 99/06473. Siloxane based polyamides useful as cosmetic gelling agents are described therein, as well as methods to make these polymers. The methods therein have been found to be less than cost effective in most cases given the large number of difficult steps involved. For example, it is necessary to have protecting groups on some of the organofunctional siloxane intermediates that later have to be removed.
U.S. Pat. No. 5,981,680 to Petroff et al. is directed at an improved process to make the polyamides of Barr. Instead of reacting a protected organic acid with a siloxane before forming the amide linkage as in Barr, Petroff calls for forming the amide linkage before any reaction with siloxane, thus eliminating the necessity of using protecting groups.
A need still exists, however, for new silicone-organic copolymers and further improved methods of making silicone-organic copolymers. In particular, a need exists for new silicone-organic copolymers that have very specific molecular weights or ranges of molecular weights and for improved methods of making silicone-organic copolymers with molecular weight control. The present invention is directed to filling these needs.
SUMMARY OF THE INVENTION
It is an object of this invention to provide methods to make silicone-organic copolymers with molecular weight control. Thus, this invention relates to a method for making silicone-organic copolymers comprising: copolymerizing an organic component other than a diamide with a silicone component, where, at least a portion of at least one of these components has been processed as to chain terminators individually, or at least a portion of both components has been processed together as to chain terminators, such processing taking place at any point prior to completion of copolymerization.
The invention also relates to a method for making siloxane-based polyamides comprising: copolymerizing, in the presence of a catalyst, an SiH containing siloxane and a vinyl containing diamide in a combination in which the molar ratio of total chain terminators added to that of total pure diamide added is 1:99 to 3:97 and the molar ratio of total siloxane SiH added to total diamide vinyl added is 0.9:1 to 1.1:1.
Also in this regard is a method for copolymerizing silicone and organic reactants into a copolymer with molecular weight control, the method comprising: estimating a total amount of polymerization chain terminators needed to produce the copolymer of desired molecular weight under reaction conditions via a system model, processing at least a portion of at least one individual copolymerization reactant or at least a portion of a mixture comprising some or all copolymerization reactants such that the total amount of chain terminator present under reaction conditions is as estimated, and copolymerizing the silicone and organic reactants under reaction conditions. Further in this regard is a method for making silicone-organic copolymers in a reaction system with molecular weight control, the method comprising: providing a copolymer molecular weight set point to a model based controller, using the controller to determine a value for a variable or values for a set of variables corresponding to an effective amount of chain terminator in the reaction system and affecting a change or changes in the system with the aim that the value for the variable or values for the set of variables determined by the controller be obtained.


REFERENCES:
patent: 3892643 (1975-07-01), Tanaka et al.
patent: 4604442 (1986-08-01), Rich
patent: 5981680 (1999-11-01), Petroff et al.
patent: 6051216 (2000-04-01), Barr et al.
patent: 6281286 (2001-08-01), Chorvath et al.
patent: 6451295 (2002-09-01), Cai et al.
patent: 6517946 (2003-02-01), Shiono et al.
patent: RE38116 (2003-05-01), Petroff et al.
patent: 0 295 561 (1988-12-01), None
patent: 1 413 170 (1991-02-01), None
patent: WO 97/36573 (1997-10-01), None
patent: WO 99/06473 (1999-02-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for making silicone-organic copolymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for making silicone-organic copolymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for making silicone-organic copolymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3267976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.