Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
2001-09-06
2004-06-22
Kunz, Gary (Department: 1647)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C435S325000, C435S320100, C530S351000, C530S402000, C530S403000, C530S408000
Reexamination Certificate
active
06753165
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to methods of making proteins and more specifically to recombinant proteins containing a “free” cysteine residue that does not form a disulfide bond.
BACKGROUND OF THE INVENTION
There is considerable interest on the part of patients and healthcare providers in the development of low cost, long-acting, “user-friendly” protein therapeutics. Proteins are expensive to manufacture and unlike conventional small molecule drugs, are usually not readily absorbed by the body. Moreover they are digested if taken orally. Therefore, proteins must typically be administered by injection. After injection most proteins are cleared rapidly from the body, necessitating frequent, often daily, injections. Patients dislike injections, which leads to reduced compliance and reduced drug efficacy. Some proteins such as erythropoietin (EPO) are effective when administered less often (three times per week for EPO) but this is due to the fact that the proteins are glycosylated. Glycosylation requires that the recombinant proteins be manufactured using mammalian cell expression systems, which is expensive and increase the cost of protein pharmaceuticals.
Thus, there is a strong need to develop protein delivery technologies that lower the costs of protein therapeutics to patients and healthcare providers. One solution to this problem is the development of methods to prolong the circulating half-lives of protein therapeutics in the body so that the proteins do not have to be injected frequently. This solution also satisfies the needs and desires of patients for protein therapeutics that are “user-friend”, i.e., protein therapeutics that do not require frequent injections.
Covalent modification of proteins with polyethylene glycol (PEG) has proven to be a useful method to extend the circulating half-lives of proteins in the body (Abuchowski et al., 1984; Hershfield, 1987; Meyers et al., 1991). Covalent attachment of PEG to a protein increases the protein's effective size and reduces its rate of clearance from the body. PEGs are commercially available in several sizes, allowing the circulating half-lives of PEG-modified proteins to be tailored for individual indications through use of different size PEGs. Other documented in vivo benefits of PEG modification are an increase in protein solubility, stability (possibly due to protection of the protein from proteases) and a decease in protein immunogenicity (Katre et al., 1987; Katre, 1990).
One known method for PEGylating proteins uses compounds such as N-hydroxy succinimide (NHS)-PEG to attach PEG to free amines, typically at lysine residues or at the N-terminal amino acid. A major limitation of this approach is that proteins typically contain several lysines, in addition to the N-terminal amino acid, and the PEG moiety attaches to the protein non-specifically at any of the available free amines, resulting in a heterogeneous product mixture. Many NHS-PEGylated proteins are unsuitable for commercial use because of low specific activities and heterogeneity. Inactivation results from covalent modification of one or more lysine residues or the N-terminal amino acid required for biological activity or from covalent attachment of the PEG moiety near the active site of the protein.
Of particular relevance to this application is the finding that modification of human growth hormone (hGH) with amine-reactive reagents, including NHS-PEG reagents, reduces biological activity of the protein by more than 10-fold (Teh and Chapman, 1988; Clark et al., 1996). GH is a 22 kDa protein secreted by the pituitary gland. GH stimulates metabolism of bone, cartilage and muscle and is the body's primary hormone for stimulating somatic growth during childhood. Recombinant human GH (rhGH) is used to treat short stature resulting from GH inadequacy, Turner's Syndrome and renal failure in children GH is not glycosylated and is fully active when produced in bacteria. The protein has a short in vivo half-life and must be administered by daily subcutaneous injection for maximum effectiveness (MacGillivray et al., 1996).
There is considerable interest in the development of long-acting forms of hGH. Attempts to create long-acting forms of hGH by PEGylating the protein with amine-reactive PEG reagents have met with limited success due to significant reductions in bioactivity upon PEGylation. Further, the protein becomes PEGylated at multiple sites (Clark et al., 1996). hGH contains nine lysines, in addition to the N-terminal amino acid. Certain of these lysines are located in regions of the protein known to be critical for receptor binding (Cunningham et al., 1989; Cunningham and Wells, 1989). Modification of these lysine residues significantly reduces receptor binding and bioactivity of the protein (de la Llosa et al., 1985; Martal et al., 1985; Teh and Chapman, 1988; Cunningham and Wells, 1989). hGH is readily modified by NHS-PEG reagents, but biological activity of the NHS-PEG protein is severely compromised, amounting to only 1% of wild type GH biological activity for a GH protein modified with five 5 kDa PEG molecules (Clark et al., 1996). The EC
50
for this multiply PEGylated GH protein is 440 ng/ml or approximately 20 nM (Clark et al., 1996). In addition to possessing significantly reduced biological activity, NHS-PEG-hGH is very heterogeneous due to different numbers of PEG molecules attached to the protein and at different amino acid residues, which has an impact on its usefulness as a potential therapeutic. Clark et al. (1996) showed that the circulating half-life of NHS-PEG-hGH in animals is significantly prolonged relative to non-modified GH. Despite possessing significantly reduced in vitro biological activity, NHS-PEG-hGH was effective and could be administered less often than non-modified hGH in a rat GH-deficiency model (Clark et al., 1996). However, high doses of NHS-PEG-hGH (60-180 &mgr;g per injection per rat) were required for efficacy in the animal models due to the low specific activity of the modified protein. There is a clear need for better methods to create PEGylated hGH proteins that retain greater bioactivity. There also is a need to develop methods for PEGylating hGH in a way that creates a homogeneous PEG-hGH product.
Biological activities of several other commercially important proteins are significantly reduced by amine-reactive PEG reagents. EPO contains several lysine residues that are critical for bioactivity of the protein (Boissel et al., 1993; Matthews et al., 1996) and modification of lysine residues in EPO results in near complete loss of biological activity (Wojchowski and Caslake, 1989). Covalent modification of alpha-interferon-2 with amine-reactive PEGs results in 40-75% loss of bioactivity (Goodson and Katre, 1990; Karasiewicz et al., 1995). Loss of biological activity is greatest with large (e.g., 10 kDa) PEGs (Karasiewicz et al., 1995). Covalent modification of G-CSF with amine-reactive PEGs results in greater than 60% loss of bioactivity (Tanaka et al., 1991). Extensive modification of IL-2 with amine-reactive PEGs results in greater than 90% loss of bioactivity (Goodson and Katre, 1990).
A second known method for PEGylating proteins covalently attaches PEG to cysteine residues using cysteine-reactive PEGS. A number of highly specific, cysteine-reactive PEGs with different reactive groups (e.g., maleimide, vinylsulfone) and different size PEGs (2-40 kDa) are commercially available. At neutral pH, these PEG reagents selectively attach to “free” cysteine residues, i.e., cysteine residues not involved in disulfide bonds. Cysteine residues in most proteins participate in disulfide bonds and are not available for PEGylation using cysteine-reactive PEGs. Through in vitro mutagenesis using recombinant DNA techniques, additional cysteine residues can be introduced anywhere into the protein. The newly added “free” cysteines can serve as sites for the specific attachment of a PEG molecule using cysteine-reactive PEGs. The added cysteine residue can be a substitution for an existin
Cox George N.
Doherty Daniel H.
Rosendahl Mary S.
Bolder Biotechnology Inc.
Hamud Fozia
Kunz Gary
Sheridan & Ross P.C.
LandOfFree
Methods for making proteins containing free cysteine residues does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for making proteins containing free cysteine residues, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for making proteins containing free cysteine residues will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3342322