Methods for inhibiting immunostimulatory DNA associated...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S312000, C514S298000

Reexamination Certificate

active

06521637

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a method of inhibiting cellular and humoral responses to immunostimulatory DNA with compositions including 4-aminoquinolines, 9-aminoacridines and derivatives thereof.
Bacterial DNA is increasingly recognized as a powerful modulator of immunity (Krieg, 1997,
Trends in Microbiol.
4:73-6), stimulating the polyclonal proliferation of B-cells and the production of cytokines by monocytes and other cells (Ballas et al., 1996,
J. Immunol.
157:1840-5). This activity is attributed to unmethylated CpG sequences in bacterial DNA, which are uncommon in vertebrate DNA (Krieg et al., 1995
. Nature
374:546-9). Single stranded oligodeoxynucleotides which have the motif PuPuCGPyPy (CpG-ODN) mimic many of the actions of bacterial DNA (Krieo et al., 1996
. Antisense
&
Nucleic Acid Drug Devel.
6:133-9), and powerfully inhibit the induction of apoptosis in mouse WEHI 231 B-cells by anti-surface IgM (Yi et al., 1996
, J. Immunol.
157:4918-25; Macfarlane et al., 1997
. Immunology
91:586). This system is a convenient and reproducible model to study responses to immunostimulatory DNA.
Bacterial DNA immobilized on beads does not stimulate immune responses, suggesting that internalization of the DNA is required for activity. DNA and olieodeoxynucleotides are endocytosed into acidic vesicles and are then transported to the cytoplasm and nucleus of cells.
Chloroquine, hydroxychloroquine and quinacrine are known to induce remissions of systemic lupus erythematosus and rheumatoid arthritis by an unknown mechanism. These drugs bind to DNA by intercalation. They are weak bases and partition into acidic vesicles. At high concentrations, chloroquine can collapse the pH gradient and disrupt the action of endosomal hydrolytic enzymes and the trafficking of receptors.
SUMMARY OF THE INVENTION
The invention is based on the discovery that quinacrine, chloroquine and selected 9-aminoacridine and 4-aminoquinoline compounds unexpectedly block the action of immunostimulatory DNA in cells at concentrations much below those needed for the other immunomodulatory effects of these compounds in vitro. The 9-aminoacridine and 4-aminoquinoline compounds utilized in the methods of the invention inhibit the anti-apoptotic effect of CpG-ODN and the CpG-ODN-induced secretion of IL-6. On the other hand, these compounds do not influence the anti-apoptotic effects of other agents, for example, lipopolysaccharides. The effects of the compounds are highly specific to immunostimulatory DNA. These agents are useful for inducino remissions of autoimmune disorders such as rheumatoid arthritis and systemic lupus erythematosus, leading to generally useful remittive and anti-inflammatory agents.
The methods of the invention are useful for inhibiting immunostimulatory DNA-associated responses in a subject, and involve the administration of a composition to a subject exhibiting responses initiated or exacerbated by immunostimulatory DNA. The compositions include 4-aminoquinolines, 9-aminoacridines and derivatives thereof. These compounds may be linked to each other by linkers. The responses initiated or exacerbated by immunostimulatory DNA include those which result in the initiation or exacerbation of various disease states. The disease states include septic shock, inflammatory bowel diseases, asthma, sinusitis, various autoimmune disorders such as hemolytic anemia, and others. The responses to be inhibited include the production of immunomodulatory proteins such as cytokines, interleukins, interferons, cell growth factors and chemokines. One such protein is IL-6. Other responses to be inhibited by the methods of the invention are high levels of erythrocyte sedimentation, and high levels of immunoglobulin.
The invention also features a method of screening compounds useful for inhibiting immunostimulatory DNA-associated responses. This method involves contacting a cell with immunostimulatory DNA, thereby inducing a measurable immune response, and a test compound. Any inhibition of the immune response is detected. The cells can be hybridoma plasma cells, including 7TD1.
A “nucleic acid” or “DNA” means multiple nucleotides (i.e., molecules comprising a sugar (e.g., ribose or deoxyribose)) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g., cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g., adenine (A) or guanine (G)). As used herein, the term refers to ribonucleotides as well as oligodeoxynucleotides. The term also includes polynucleosides (i.e., a polynucleotide minus the phosphate) and any other organic base-containing polymer. Nucleic acid molecules can be obtained from existing nucleic acid sources (e.g., genomic or cDNA), but are preferably synthetic (e.g., produced by oligonucleotide synthesis). A “stabilized nucleic acid molecule” or “nuclease-resistant nucleic acid molecule” means a nucleic acid molecule that is relatively resistant to in vivo degradation (e.g., via an exo- or endo-nuclease). Stabilization can be a function of length or secondary structure. Unmethylated CpG-containing nucleic acid molecules that are tens to hundreds of kilobases long are relatively resistant to in vivo degradation. For shorter immunostimulatory nucleic acid molecules, secondary structure can stabilize and increase their effect. For example, if the 3′ end of a nucleic acid molecule is self-complementary to an upstream region, so that it can fold back and form a stem loop structure, then the nucleic acid molecule becomes stabilized and therefore exhibits more activity.
Preferred stabilized or nuclease-resistant nucleic acid molecules referred to in the instant invention have a modified backbone. For use in immune stimulation, especially preferred stabilized nucleic acid molecules are phosphorothioate-modified nucleic acid molecules (i.e., at least one of the phosphate oxygens of the nucleic acid molecule is replaced by sulfur). Preferably the phosphate modification occurs at or near the 5′ and/or 3′ end of the nucleic acid molecule. In addition to stabilizing nucleic acid molecules, phosphorothioate-modified nucleic acid molecules (including phosphorodithioate-modified) can increase the extent of immune stimulation of the nucleic acid molecule, which contains an unmethylated CpG dinucleotide.
International Patent Application Number WO 95/26204 entitled “Immune Stimulation by Phosphorothioate Oligonucleotide Analogs” also reports on the non-specific immunostimulatory effect of phosphorothioate modified olionucleotides. International Patent Application WO 96/02555 discloses the ability of unmethylated CpG-containing oligonucleotides to activate lymphocytes. Unmethylated CpC-containing nucleic acid molecules having a phosphorothioate backbone have been found to preferentially activate B-cell activity, while unmethylated CpG-containing nucleic acid molecules having a phosphodiester backbone have been found to preferentially activate monocytic (macrophages, dendritic cells and monocytes) and NK (natural killer) cells. Other stabilized nucleic acid molecules include non-ionic DNA analogs, such as alkyl- and aryl-phosphonates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated. Nucleic acid molecules that contain a diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown substantially resistant to nuclease degradation.
As used herein, the term “immunostimulatory DNA” refers to bacterial DNA, viral DNA, other DNA, synthetic double- or single-stranded DNA, DNA synthesized with a nuclease-resistant backbone or at least a partially nuclease resistant backbone, (such as a phosphorothioate-backboned DNA) which stimulates (e.g., has a mitogenic effect on, or induces or increases cytokine expression by vertebrate lymphocytes. Such immunostimulatory DNA includes that which contains an unmethylated cytosine, guanine (CpG) dinucleotide sequence. A “CpG

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for inhibiting immunostimulatory DNA associated... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for inhibiting immunostimulatory DNA associated..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for inhibiting immunostimulatory DNA associated... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3177841

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.