Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...
Reexamination Certificate
2001-08-24
2004-10-05
Kunz, Gary (Department: 1647)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving antigen-antibody binding, specific binding protein...
C435S007210, C435S006120, C435S069100, C435S070100, C435S070300, C436S501000, C530S350000, C530S387900
Reexamination Certificate
active
06800447
ABSTRACT:
FIELD OF THE INVENTION
The present invention concerns new peptides and the nucleic acid molecules encoding said peptides, the vector comprising said nucleic acid molecules, the cells transformed by said vector, inhibitors directed against said peptides or said nucleic acid molecules, a pharmaceutical composition and a diagnostic and/or dosage device comprising said products, and non human transgenic animals expressing the peptides according to the invention or the nucleic acid molecules encoding said peptides.
The invention further provides a method for determining ligand binding, detecting expression, screening for drugs binding specifically to said peptides and treatments involving the peptides or the nucleic acid molecules according to the invention.
TECHNOLOGICAL BACKGROUND OF THE ART
Chemotactic cytokines, or chemokines, are small signalling proteins that can be divided in two subfamilies (CC- and CXC-chemokines) depending on the relative position of the first two conversed cysteines. Interleukin 8 (IL-8) is the most studied of these proteins, but a large number of chemokines (Regulated on Activation Normal T-cell Expressed and Secreted (RANTES), Monocyte Chemoattractant Protein 1 (MCP-1), Monocyte Chemoattractant Protein 2 (MCP-2), Monocyte Chemoattractant Protein 3 (MCP-3), Growth-Related gene product a (GRO&agr;), Growth-Related gene product &bgr; (GRO)&bgr;, Growth-Related gene product &ggr; (GRO&ggr;), Macrophage Inflammatory Protein 1 &agr; (MIP-1&agr;) and &bgr;, etc.) has now been described [4]. Chemokines play fundamental roles in the physiology of acute and chronic inflammatory processes as well as in the pathological dysregulations of these processes, by attracting and simulating specific subsets of leucocytes [32]. RANTES for example is a chemoattractant for monocytes, memory T-cells and eosinophils, and induces the release of histamine by basophils. MCP-1, released by smooth muscle cells in arteriosclerotic lesions, is considered as the factor (or one of the factors) responsible for macrophage attraction and, therefore, for the progressive aggravation of the lesions [4].
MIP-1&agr;, MIP-1&bgr; and RANTES chemokines have recently been described as major HIV-suppressive factors produced by CD8
+
T-cells [9]. CC-chemokines are also involved in the regulation of human myeloid progenetor cell proliferation [6, 7].
Recent studies have demonstrated that the actions of CC- and CXC-chemokines are mediated by subfamilies of G protein-coupled receptors. To date, despite the numerous functions attributed to chemokines and the increasing number of biologically active ligands, only six functional receptors have been identified in human. Two receptors for interleukin-8 (IL-8) have been described [20, 29]. One (IL-8RA) binds IL-8 specifically, while the other (IL-8RB) binds IL-8 and other CXC-chemokines, like GRO. Among receptors binding CC-chemokines, a receptor, designated CC-chemokine receptor 1 (CCR1), binds both RANTES and MIP-1&agr; [31], and the CC-chemokine receptor 2 (CCR2) binds MCP-1 and MCP-3 [8, 44, 15]. Two additional CC-chemokine receptors were cloned recently the CC-chemokine receptor 3 (CCR3) was found to be activated by RANTES, MIP-1&agr; and MIP-1&bgr; [10]; the CC-chemokine receptor 4 (CCR4) responds to MIP-1, RANTES and MCP-1 [37]. In addition to these six functional receptors, a number of orphan receptors have been cloned from human and other species, that are structurally related to either CC- or CXC-chemokine receptors. These include the human BLR1 [13], EBI1 [5], LCR1 [21], the mouse MIP-1 RL1 and MIP-1 RL2 [17] and the bovine PPR1 [25]. Their respective ligand(s) and function(s) are unknown at present.
SUMMARY OF THE INVENTION
The present invention is related to a peptide having at least an amino acid sequence which presents more than 80%, advantageously more than 90%, preferably more than 95%, homology with the amino acid sequence as represented in SEQ ID NO. 1.
Preferably, said peptide has also at least an amino acid sequence which presents more than 80%, advantageously more than 90%, preferably more than 95%, homology with the amino acid sequence as represented in SEQ ID NO. 2.
According to another embodiment of the present invention, the peptide has at least an amino acid sequence which presents more than 80%, advantageously more than 90%, preferably more than 95%, homology with the amino acid sequence as represented in SEQ ID NO. 3.
The present invention is also related to the amino acid sequence of SEQ ID NO. 1, SEQ ID NO. 2, SEQ ID NO. 3 or a portion thereof (represented in the FIG.
1
).
A “portion of an amino acid sequence” means one or more amino acid segments having the same or improved binding properties of the whole peptide according to the invention. Said portion could be an epitope which is specifically binded by a ligand of the peptide which could be a known “natural ligand” of said peptide, an agonist or an analog of said ligand, or an inhibitor capable of competitively inhibiting the binding of said ligand to the peptide (including the antagonists of said ligand to the peptide).
Specific examples of said portions of amino acid sequence and their preparation process are described in the publication of Rucker J. et al. (Cell, Vol. 87, pp. 437-446 (1996)) incorporated herein by reference.
According to tho invention, said portion of the amino acid sequence of the peptide according to the invention comprises the N-terminus segment and the first extracellular loop of the peptide.
Therefore, according to the invention, the amino acid sequence as represented in SEQ ID its NO. 1 is the common amino acid sequence of SEQ ID NO. 2 and of SEQ ID NO. 3 (see also FIG.
1
). Therefore, a first industrial application of said amino acid sequence is the identification of the homology between said amino acid sequence and the screening of various mutants encoding a different amino acid sequence than the one previously described, and the identification of various types of patient which may present a predisposition or a resistance to the disorders described in the following specification.
Preferably, the peptide according to the invention or a portion thereof is an active CC-chemokine receptor.
Advantageously, the CC-chemokine receptor according to the invention is stimulated by the MIP-1&bgr; chemokine at a concentration less or equal to 10 nm, and is advantageously also stimulated by the MIP-1&agr; or RANTES chemokines. However, said chemokine receptor is not stimulated by the MCP-1, MCP-2, MCP-3, IL8 and GRO&agr; chemokines.
In addition, the peptide according to the invention or a portion thereof is also a receptor of HIV viruses or a portion of said HIV viruses.
It is meant by “HIV viruses”, HIV-1 or HIV-2 and all the various strains of HIV viruses which are involved in the development of AIDS. It is meant by a “a portion of HIV viruses”, any epitope of said viruses which is able to interact specifically with said receptor. Among said portions of viruses which may be involved in the interaction with the peptide according to the invention, are peptides encoded by the ENV and GAG viruses genes.
Preferably, said portion of HTV viruses is the glycopeptide gp120/160 (membrane-bound gp160 or the free gp derived therefrom) or a portion thereof.
It is meant by a “portion of the glycopeptide gp120/160 ” any epitope, preferably an immuno-dominant epitope, of said glycopeptide which may interact specifically with the peptide according to the invention, such as for instance the V3 loop (third hypervariable domain).
According to another embodiment of the present invention, the peptide according to the invention is an inactive CC-chemokine receptor. An example of such inactive CC-chemokine receptor is encoded by the amino acid sequence as represented in SEQ ID NO. 2.
It is meant by an “inactive CC-chemokine receptor” a receptor which is not stimulated by any known CC-chemokine, especially the MIP-1&bgr;, MIP-1
Libert Frederick
Parmentier Marc
Samson Michel
Vassart Gilbert
Euroscreen S.A.
Kunz Gary
Palmer & Dodge LLP
Seharaseyon Jegatheesan
Williams Kathleen M.
LandOfFree
Methods for identifying compounds which bind the active CCR5... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for identifying compounds which bind the active CCR5..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for identifying compounds which bind the active CCR5... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3304314