Methods for growing and imprinting fish using an odorant

Animal husbandry – Aquatic animal culturing – Fish culturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06748900

ABSTRACT:

BACKGROUND OF THE INVENTION
Although great advantages exist in being able to attract or repel fish, such methods have not yet been well developed or understood. Hence, improved methods for attracting or repelling fish are needed.
SUMMARY OF THE INVENTION
The present invention relates to a discovery that fish can be imprinted with an odorant (e.g., an attractant or repellant) so that, when the fish are later exposed to the odorant, they can react to the odorant e.g., distinguish the odorant or be sensitized to the odorant through manipulating fundamental biological mechanisms of the fish. In particular, the present invention encompasses the discovery that a protein, called a Polyvalent Cation Sensing Receptor (PVCR), has a role in allowing fish to “sense” ions and amino acids, and works with odorant receptors, under certain conditions, to imprint fish with an odorant. The PVCR interacts with odorant receptors to alter olfactory sensing capabilities of the fish.
The present invention applies to several types of aquatic species including freshwater fish, marine fish and anadromous fish. In one embodiment, anadromous fish can be imprinted during various phases including the larval stage (e.g., yolk sac larvae, or first feeding larvae) or the smoltification stage. In nature, many anadromous fish live most of their adulthood in seawater, but swim upstream to freshwater for the purpose of breeding. As a result, anadromous fish hatch from their eggs in freshwater. As these fish grow, they swim downstream and gradually adapt to the seawater. To raise these fish, fish hatcheries transfer these fish from freshwater to seawater when they undergo smoltification. Smoltification is the stage at which fish become able to adapt from freshwater to seawater. Accordingly, while fish are being imprinted to an odorant, they are maintained in freshwater, and subsequently transferred to seawater.
The present invention relates to methods of imprinting fish to at least one fish odorant (e.g., fish attractant or fish repellant) by adding at least one PVCR modulator to a first body of water (e.g., freshwater) in an amount sufficient to modulate expression and/or sensitivity of at least one PVCR; and adding feed for fish consumption to the water. The feed contains at least one odorant and an amount of NaCl sufficient to contribute to a significantly increased level of the PVCR modulator in serum of the fish. The PVCR modulator alters olfactory sensing of fish to the odorant. Modulated expression of at least one PVCR can be maintained until the fish are transferred to a second body of water. In one embodiment, fish (e.g., marine fish or anadromous fish) can be transferred to seawater, and in another embodiment fish (e.g., freshwater fish) can be transferred to freshwater without the PVCR modulator added to it. In yet another embodiment, fish can be transferred to freshwater having the PVCR modulator, but without the odorant added to it. The present invention also includes providing a source of said odorant after fish have been transferred to the second body of water. When the fish are transferred to the second body of water, the olfactory sensing apparatus of the fish can distinguish the odorant or are sensitized to the odorant. Altering olfactory sensing of fish to the odorant further includes generating an olfactory nerve impulse after binding of the odorant to the olfactory lamellae in the fish. The methods also include adding a PVCR modulator to the feed. Examples of fish attractants are amino acids, nucleotides, organic compounds, and combination thereof. Compounds derived from performing a mammalian finger rinse, for example, can be used as a fish repellant.
In another embodiment, the present invention relates to methods of imprinting fish to at least one odorant for fish by adding at least one PVCR modulator to the first body of water (e.g., freshwater) in an amount sufficient to modulate expression and/or sensitivity of at least one PVCR; adding at least one odorant to the water; and adding feed for fish consumption to the water, wherein the feed contains an amount of NaCl sufficient to contribute to a significantly increased level of the PVCR modulator in serum of the fish. The PVCR modulator alters olfactory sensing of fish to the odorant. The present invention also includes providing a source of said odorant after fish have been transferred to a second body of water. When the fish are transferred to the second body of water, the olfactory sensing apparatus of the fish can distinguish the odorant or are sensitized to the odorant.
The present invention also includes methods for growing anadromous fish so that the anadromous fish are sensitized to at least one fish odorant by imprinting the anadromous fish with the fish attractant in freshwater during smoltification, as described herein; transferring anadromous fish to seawater; and adding feed for fish consumption to the seawater, wherein the feed contains a source of nutrition and the attractant used for imprinting. When transferred to seawater, the olfactory sensing apparatus of these imprinted fish can distinguish the attractant or are sensitized to the attractant.
The invention also embodies feed for consumption by anadromous fish in freshwater. The feed comprises one or more sources of nutrition; an amount of NaCl between about 10,000 mg/kg and about 100,000 mg/kg; and at least one fish attractant. The feed can further include adding a PVCR modulator such as tryptophan in an amount between about 1 and about 10 gm/kg. Similarly, the present invention includes feeds for consumption by anadromous fish in seawater. This seawater feed comprises a source of nutrition; and the fish attractant to which fish have been imprinted.
The present invention also relates to methods of identifying a fish odorant and its modulation by at least one PVCR present in the olfactory system of fish, by exposing the odorant to be tested to the tissue of fish, wherein at least one odorant receptor and at least one PVCR are present in tissue; and assessing the magnitude or characteristics of an olfactory nerve response. The presence of an olfactory nerve impulse indicates the compound is an odorant or PVCR modulator in the water in contact with the fish olfactory epithelium. The absence of a olfactory nerve impulse indicates the compound is not an odorant or PVCR modulator in the water in contact with the fish olfactory epithelium. Alterations in the magnitude or characteristics of the olfactory nerve impulse upon exposure of the olfactory epithelium to various combinations of odorants and PVCR modulators indicates modifications of the olfactory nerve signals from odorant receptors and/or PVCR proteins present in this tissue. Such assays can be further modified by exposure of the fish to a PVCR modulator present in freshwater as well as feed added to the freshwater before assay using these methods. Assays known in the art such as behavioral attractant assays or behavioral avoidance assays can be performed to determine whether the odorant is an attractant or repellant, respectively.
The present invention includes methods of increasing food consumption of anadromous fish, methods of increasing the growth rate of one or more anadromous fish, methods of increasing survival of anadromous fish after their transfer to seawater, and methods for improving the feed conversion ratio (FCR) for anadromous fish. These methods are accomplished with knowledge of the roles of PVCR proteins in various organs including the olfactory lamellae, brain and gastrointestinal tract. In the fish olfactory system, it has been discovered that PVCR proteins perform controlling functions enabling fish to “smell” the ionic composition of the surrounding water as well as integrate specific attractants with water salinity. In the fish gastrointestinal tract, it has been discovered that PVCR proteins act as dual sensors for both the ionic and nutrient composition of intestinal contents. These dual functions of PVCRs permit cells lining the fish G.I. tract to integrate information on the ionic composition

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for growing and imprinting fish using an odorant does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for growing and imprinting fish using an odorant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for growing and imprinting fish using an odorant will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3304772

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.