Electrolysis: processes – compositions used therein – and methods – Electrolytic coating – Coating selected area
Reexamination Certificate
2007-04-30
2011-12-06
Van, Luan (Department: 1724)
Electrolysis: processes, compositions used therein, and methods
Electrolytic coating
Coating selected area
C205S125000
Reexamination Certificate
active
08070930
ABSTRACT:
Methods for the preparation of long, dimensionally uniform, metallic nanowires that are removable from the surface on which they are synthesized. The methods include the selective electrodeposition of metal nanowires at step edges present on a stepped surface, such as graphite, from an aqueous solution containing a metal or metal oxide. Where a metal oxide is first deposited, the metal oxide nanowires are reduced via a gas phase reduction at elevated temperatures to metal nanowires. Alternatively, beaded or hybrid nanowires comprising a metal A into which nanoparticles of a metal B have been inserted may be prepared by first electrodepositing nanoparticles of metal B selectively along step edges of a stepped surface, capping these nanoparticles with a molecular layer of an organic ligand, selectively electrodepositing nanowire segments of metal A between nanoparticles of metal B and then heating the surface of the hybrid nanowire under reducing conditions to remove the ligand layer. In all three methods, the nanowires may be removed from the stepped surface by embedding the wires in a polymer film, and then peeling this film containing the embedded wires off of the stepped surface.
REFERENCES:
patent: 6172902 (2001-01-01), Wegrowe et al.
patent: 6476409 (2002-11-01), Iwasaki et al.
patent: 6843902 (2005-01-01), Penner et al.
patent: 7220346 (2007-05-01), Penner et al.
Kovtyukhova et al. (“Layer-by-Layer Assembly of Rectifying Junctions in and on Metal Nanowires,” J. Phys. Chem. B, 2001, 105 (37), pp. 8762-8769, published Aug. 14, 2001).
Heydon et al. (“Magnetic properties of electrodeposited nanowires,” J. Phys. D: Appl. Phys. 30, 1083, 1997).
Lowenheim (Electroplating, pp. 137-139, 1978).
Zach et al. (“Molybdenum Nanowires by Electrodeposition”, Science 290, 2000, 2120).
L. Escapa and N. Garcia, “Is the Observed Quantized Conductance on Small Contacts Due to Coherent Ballistic Transport”, App. Phys. Lett. 56 (1990) 901-903.
J. L. Costa Kramer, N. Garcia and H. Olin, “Conductance quantization in bismuth nanowires at 4 K”, Phys. Rev. Lett. 78 (1997) 4990-4993.
Z. B. Zhang, X. Z. Sun, M. S. Dresselhaus, J. Y. Ying and J. Heremans, “Electronic transport properties of single-crystal bismuth nanowire arrays”, Phys. Rev. B 61 (2000) 4850-4861.
Z. B. Zhang, X. Z. Sun, M. S. Dresselhaus, J. Y. Ying and J. P. Heremans, “Mag netotransport investigations of ultrafine single-crystalline bismuth nanowire arrays”, App. Phys. Lett. 73 (1998) 1589-1591.
J. I. Pascual, J. Mendez, J. Gomezherrero, A. M. Baro, N. Garcia and V. T. Binh, “Quantum Contact in Gold Nanostructures by Scanning Tunneling Microscopy”, Phys. Rev. Lett. 71 (1993) 1852-1855.
J. I. Pascual, J. Mendez, J. Gomezherrero, A. M. Baro, N. Garcia, U. Landman, W. D. Leudtke, E. N. Bogachek and H. P. Cheng, “Electrical and Mechanical Properties of Metallic Nanowires—Conductance Quantization and Localization”, J.Vac. Sci. Technol. B 13 (1995) 1280-1284.
J. Heremans, C. M. Thrush, Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying and D. T. Morelli, “Magnetoresistance of bismuth nanowire arrays: A possible transition from one-dimensional to three-dimensional localization”, Phys. Rev. B 58 (1998) 10091-10095.
E. N. Bogachek, A. G. Scherbakov and U. Landman, “Magnetic Switching and Thermal Enhancement of Quantum Transport Through Nanowires”, Phys. Rev. B 53 (1996) 13246-1 3249.
E. N. Bogachek, A. G. Scherbakov and U. Landman, “Nonlinear magnetoconductance of nanowires”, Phys. Rev. B 56 (1997) 14917-14920.
Liu, C. L. Chien, P. C. Searson and Y. Z. Kui, “Structural and magneto-transport properties of electrodeposited bismuth nanowires”, App. Phys. Lefl. 73 (1998) 1436-1438.
K. Liu, K. Nagodawithana, P. C. Searson and C. L. Chien, “Perpendicular Giant Magnetoresistance of Multilayered Co/Cu Nanowires”, Phys. Rev. B 51 (1995) 7381-7384.
K. Liu, C. L. Chien and P. C. Searson, “Finite-size effects in bismuth nanowires”, Phys. Rev. B 58 (1998) R14681-R14684.
U. Landman, W. D. Luedtke, B. E. Salisbury and R. L. Whetten, “Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions”, Phys. Rev. Lett. 77 (1996) 1362-1 365.
C. Yannouleas and U. Landman, “On mesoscopic forces and quantized conductance in model metallic nanowires”, J. Phys. Chem. B 101 (1997) 5780-5783.
H. Ikeda, Y. Qi, T. Cagin, K. Samwer, W. L. Johnson and W. A. Goddard, “Strain rate induced amorphization in metallic nanowires”, Phys. Rev. Lefl. 82 (1999) 2900-2903.
Blom, H. Olin, J. L. CostaKramer, N. Garcia, M. Jonson, P. A. Serena and R. I. Shekhter, “Free-electron model for mesoscopic force fluctuations in nanowires”, Phys. Rev. B 57 (1998) 8830-8833.
H. Haldcinen, R. N. Barnett and U. Langman, “Gold Nanowire and Their Chemical Modifications”, J. Phys. Chem. B 103 (1999) 8814.
C. Z. Li, H. X. He, A. Bogozi, J. S. Bunch and N. J. Tao, “Molecular Detection based on Conductance Quantization of Nanowires.”, App. Phys. Lett. 76 (2000) 1333.
M. P. Zach, K. Ng and R. M. Penner, “Molybdenum Nanowires by Electrodeposition”, Science 290 (2000) 2120.
D. Y. Petrovykh, F. J. Himpsel and T. Jung, “Width distribution of nanowires grown by step decoration”, Surf. Sci. 407 (1998) 189-1 99.
S. Morin, A. Lachenwitzer, O. M. Magnussen and R. J. Behm, “Potential-controlled step flow to 3D step decoration transition: Ni electrodeposition on Ag (1 11)”, Phys. Rev. Lett. 83 (1999) 5066-5069.
E. A. Abd El Meguid, P. Berenz and H. Baltruschat, “Step decoration at Pt single crystal electrodes: role of the anion”, J. Electroanal. Chem. 467 (1999) 50-59.
J. Dekoster, B. Degroote, H. Pattyn, G. Langouche, A. Vantomme and S. Degroote, “Step decoration during deposition of Co on Ag(001) by ultralow energy ion beams”, App. Phys. Lett. 75 (1999) 938-940.
R. K. Kawakami, M. O. Bowen, H. J. Choi, E. J. Escorcia-Aparicio and Z. Q. Qiu, “Step-induced magnetic anisotropy in Co stepped Cu(001) as a function of step density and Cu step decoration”, J. AppI. Phys. 85 (1999) 4955-4957.
M. Blanc, K. Kuhnke, V. Marsico and K. Kern, “Probing step decoration by grazing-incidence helium scattering”, Surf. Sci. 414 (1998) L964-L969.
P. Gambardella, M. Blanc, H. Brune, K. Kuhnke and K. Kern, “One-dimensional metal chains on Pt vicinal surfaces”, Phys. Rev. B 61 (2000) 2254-2262.
A. Dallmeyer, C. Carbone, W. Eberhardt, C. Pampuch, O. Rader, W. Gudat, P. Gambardella and K. Kern, “Electronic states and magnetism of monatomic Co and Cu wires”, Phys. Rev. B 61 (2000) R5133-R51 36.
E. Braun, Y. Eichen, U. Sivan and G. BenYoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire”, Nature 391 (1998) 775-778.
Y. Eichen, E. Braun, U. Sivan and G. BenYoseph, “Self-assembly of nanoelectronic components and circuits using biological templates”, Acta Polymerica 49 (1998) 663-670.
G. Fasol and K. Runge, “Selective electrodeposition of nanometer scale magnetic wires”, App. Phys. Lett. 70 (1997) 2467-2468.
C. W. Zhou, J. Kong and H. J. Dai, “Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters”, App. Phys. Lett. 76 (2000) 1597-1 599.
A. A. Setlur, J. M. Lauerhaus, J.-Y. Dai and R. P. H. Chang, “A Method for Synthesizing Lage Quantities of Carbon Nanotubes and Encapsulated copper nanowires”, APL 69 (1996) 345.
W. K. Hsu, S. Trasobares, H. Terrones, M. Terrones, N. Grobert, Y. Q. Zhu, W. Z. Li, R. Escudero, J. P. Hare, H. W. Kroto and D. R. M. Walton, “Electrolytic formation of carbon-sheathed mixed Sn-Pb nanowires”, Chem. Mat. 11 (1999) 1747-1751.
W. K. Hsu, J. Li, H. Terrones, M. Terrones, N. Grobert, Y. Q. Zhu, S. Tr
Favier Fred
Penner Reginald Mark
Zach Michael Paul
Orrick Herrington & Sutcliffe LLP
The Regents of the University of California
Van Luan
LandOfFree
Methods for fabricating metal nanowires does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for fabricating metal nanowires, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for fabricating metal nanowires will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4313978