Methods for fabricating a compound semiconductor protection...

Semiconductor device manufacturing: process – Forming bipolar transistor by formation or alteration of... – Including diode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S170000

Reexamination Certificate

active

06703284

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention generally relates to compound semiconductors. In particular, the invention relates to the protection of circuits from undesired transient voltage spikes such as those from electrostatic discharge (ESD).
2. Description of the Related Art
An undesired voltage transient on a data line can damage an electronic circuit. As technology progresses and device geometries continue to shrink, devices become ever more sensitive to voltage transients. One example of a source of an undesired voltage transient is electrostatic discharge (ESD).
Steering diodes and transient voltage suppressors have been applied to data lines in conventional circuits implemented in silicon. Where such steering diodes and/or transient voltage suppressors are fabricated from silicon on a monolithic chip, pnpn or npnp thyristor latchup can occur, which can also damage the electronic circuit. Although incorporating discrete diodes and transient voltage suppressors on a monolithic chip is possible, such incorporation techniques can involve relatively expensive double-sided processing techniques and alignment methods, which are complex, expensive, and not standard tools in the processing of silicon. Silicon has other disadvantages, such as relatively low speed and relatively low isolation between devices. The relatively low isolation between devices gives rise to relatively high leakage currents and can rapidly drain the batteries of battery-powered circuits.
Faster devices, such as heterojunction bipolar transistors (HBTs) and monolithic microwave integrated circuits (MMICs), using Group III-V compound semiconductors such as gallium arsenide (GaAs), indium phosphide (InP), and the like, are preferred in certain relatively high-speed applications, such as in relatively high-speed digital circuits and in relatively high-frequency wireless circuits. Such circuits are also sensitive to undesired voltage transients. In conventional compound semiconductor circuits, a transient voltage protection circuit is fabricated from discrete components and coupled to a monolithic compound semiconductor circuit through bond wires and die attach. This results in a relatively low assembly yield and poor performance. For example, the bond wires can exhibit relatively significant inductance, which can decrease protection from relatively fast transients. In addition, relatively high parasitic capacitance from the wire-bonded discrete components renders such transient voltage protection circuits relatively ill suited to high-speed circuits such as microwave circuits.
What is needed is a transient voltage protection circuit that is monolithically integrated in a compound semiconductor circuit to protect the sensitive devices from undesired voltage transients.
SUMMARY OF THE INVENTION
The invention relates to the protection of devices in a monolithic chip fabricated from an epitaxial wafer, such as a wafer of a Group III-V compound semiconductor. A Group IV compound semiconductor can also be used. Devices fabricated from Group III-V compound semiconductors offer higher speed and better isolation than comparable devices from silicon semiconductors. Semiconductor devices can be permanently damaged when exposed to an undesired voltage transient such as electrostatic discharge (ESD). However, conventional techniques developed for silicon devices are not compatible with processing techniques for devices that are fabricated from epitaxial wafers, such as gallium arsenide (GaAs), which is a Group III-V compound semiconductor. Embodiments of the invention advantageously include transient voltage protection circuits that are relatively efficiently and reliably manufactured to protect sensitive devices from undesired voltage transients. Embodiments of the invention include circuits that are monolithically integrated with the circuit to be protected and also include circuits that are fabricated and packaged in a separate integrated circuit and are coupled via a printed wiring board (PWB) or printed circuit board (PCB) and placed in front of the circuit to be protected in the data path.
One embodiment according to the invention includes a protection circuit that protects devices coupled to a signal or data line from undesired transients on the signal line. The protection circuit is fabricated as a separate circuit and coupled to a circuit to be protected or can be monolithically integrated with the circuit to be protected. For example, the protection circuit can be part of a separate integrated circuit (IC) and attached to a PWB for coupling to the circuit to be protected. In one embodiment, the protection circuit is relatively near to an input/output (I/O) port, and the circuit to be protected is coupled to the I/O port through traces in the PWB that are coupled to the protection circuit. Advantageously, the protection circuit can be formed on the same side of a monolithic epitaxial substrate as the devices that are protected by the protection circuit. The monolithic epitaxial substrate can correspond to a Group III-V compound semiconductor or a Group IV compound semiconductor. For example, the Group III-V compound semiconductor can correspond to gallium arsenide (GaAs) substrates and indium phosphide (InP) substrates. Other examples of epitaxial wafers from which the protection circuit can be formed include indium gallium phosphide (InGaP), gallium nitride (GaN), aluminum gallium arsenide (AlGaAs), indium gallium arsenide (InGaAs), indium gallium aluminum phosphide (InGaAlP), indium gallium arsenide phosphide (InGaAsP), indium gallium nitride (InGaN), aluminum gallium nitride (AlGaN), and others currently in existence or later developed. Examples of Group IV compound semiconductors include silicon carbide (SiC) and silicon germanium (SiGe), which can be based on a semi-insulating SiC substrate.
The protection circuit includes a first steering diode collection and a second steering diode collection. Embodiments of the protection circuit can optionally include a breakdown diode. The first steering diode collection and the second steering diode collection can include a single diode or can include an arrangement of diodes connected in series. The arrangement of multiple diodes in a stack can increase the forward voltage drop of the arrangement and thereby can advantageously be used to protection circuit without a breakdown diode. However, a breakdown diode can also be included in the protection circuit. A diode in the first steering diode collection or the second steering diode collection is fabricated from a base-collector junction of a transistor configured as a diode. In one embodiment, the portion of the transistor configured as a diode that would correspond to an emitter is removed by, for example, an etching process.
An anode of the first steering diode collection is electrically coupled to the signal line, and a cathode of the first steering diode collection is electrically coupled to a first reference. The first reference can include power supply sources and ground. A cathode of the second steering diode collection is electrically coupled to the signal line, and an anode of the second steering diode collection is electrically coupled to a second reference. The second reference can include negative power supply sources and ground. In one embodiment, the first steering diode collection is electrically coupled to the second steering diode collection through a metallization layer.
One embodiment of the protection circuit further includes a breakdown diode or transient voltage suppression (TVS) diode formed from a base-emitter junction of a transistor configured as the breakdown diode. Advantageously, the TVS diode can provide protection from undesired transients on a corresponding power supply line, such as V
CC
. The TVS diode A cathode of the breakdown diode is electrically coupled to the cathode of the first steering diode collection, and an anode of the breakdown diode is electrically coupled to the anode of the second steering diode collection. Advantageously, the breakdown diod

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for fabricating a compound semiconductor protection... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for fabricating a compound semiconductor protection..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for fabricating a compound semiconductor protection... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3226037

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.