Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Amino acid sequence disclosed in whole or in part; or...
Reexamination Certificate
2001-03-28
2004-09-28
Spector, Lorraine (Department: 1646)
Drug, bio-affecting and body treating compositions
Antigen, epitope, or other immunospecific immunoeffector
Amino acid sequence disclosed in whole or in part; or...
C424S198100, C514S012200, C530S350000
Reexamination Certificate
active
06797271
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
This invention relates to polynucleotides and polypeptides derived from lymph node stromal cells from flaky skin (fsn -/-) mice and their use in therapeutic methods.
BACKGROUND OF THE INVENTION
Lymph vessels and nodes are important components of the body's immune system. Lymph nodes are small lymphatic organs that are located in the path of lymph vessels. Large molecules and cells, including foreign substances, enter into the lymphatic vessels and, in circulating through these vessels, pass through the lymph nodes. Here, any foreign substances are concentrated and exposed to lymphocytes. This triggers a cascade of events that constitute an immune response, protecting the body from infection and from cancer.
Lymph nodes are surrounded by a dense connective tissue network that forms a supporting capsule. This network extends into the body of the lymph node, forming an additional framework of support. Throughout the remainder of the organ, a fine meshwork can be identified that comprises reticular fibres and the reticular cells that produce and surround the fibres. These features provide a support for the main functional cells of the lymphatic system, which are T- and B-lymphocytes. Additional cell types found in lymph nodes include macrophages, follicular dendritic cells, and endothelial cells that line the blood vessels servicing the node.
The cells within lymph nodes communicate with each other in order to defend the body against foreign substances. When a foreign substance, or antigen, is present, it is detected by macrophages and follicular dendritic cells that take up and process the antigen, and display parts of it on their cell surface. These cell surface antigens are then presented to T- and B-lymphocytes, causing them to proliferate and differentiate into activated T-lymphocytes and plasma cells, respectively. These cells are released into the circulation in order to seek out and destroy antigen. Some T- and B-lymphocytes will also differentiate into memory cells. Should these cells come across the same antigen at a later date, the immune response will be more rapid.
Once activated T- and B-lymphocytes are released into the circulation, they can perform a variety of functions that lead to the eventual destruction of antigen. Activated T-lymphocytes can differentiate into cytotoxic lymphocytes (also known as killer T-cells) which recognise other cells that have foreign antigens on their surface and kill the cell by causing them to lyse. Activated T-lymphocytes can also differentiate into helper T-cells which will then secrete proteins in order to stimulate B-lymphocytes, and other T-lymphocytes, to respond to antigens. In addition, activated T-lymphocytes can differentiate into suppressor T-cells which secrete factors that suppress the activity of B-lymphocytes. Activated B-lymphocytes differentiate into plasma cells, which synthesise and secrete antibodies that bind to foreign antigens. The antibody-antigen complex is then detected and destroyed by macrophages, or by a group of blood constituents known as complement.
Lymph nodes can be dissociated and the resulting cells grown in culture. Cells that adhere to the tissue culture dishes can be maintained for some length of time and are known as stromal cells. The cultured cells are a heterogeneous population and can be made up of most cells residing within lymph nodes, such as reticular cells, follicular dendritic cells, macrophages and endothelial cells. It is well known that bone marrow stromal cells play a critical role in homing, growth and differentiation of hematopoietic progenitor cells. Proteins produced by stromal cells are necessary for the maintenance of plasma cells in vitro. Furthermore, stromal cells are known to secrete factors and present membrane-bound receptors that are necessary for the survival of lymphoma cells.
An autosomal recessive mutation, designated flaky skin (fsn -/-), has been described in the inbred A/J mouse strain (The Jackson Laboratory, Bar Harbour, Me.). The mice have a skin disorder similar to psoriasis in humans. Psoriasis is a common disease affecting 2% of the population, which is characterised by a chronic inflammation associated with thickening and scaling of the skin. Histology of skin lesions shows increased proliferation of the cells in the epidermis, the uppermost layer of skin, together with the abnormal presence of inflammatory cells, including lymphocytes, in the dermis, the layer of skin below the epidermis. While the cause of the disease is unclear, psoriasis is associated with a disturbance of the immune system involving T lymphocytes. The disease occurs more frequently in family members, indicating the involvement of a genetic factor as well. Mice with the fsn gene mutation have not only a psoriatic-like skin disease but also other abnormalities involving cells of the immune and hematopoietic system. These mice have markedly increased numbers of lymphocytes associated with enlarged lymphoid organs, including the spleen and lymph nodes. In addition, their livers are enlarged, and the mice are anaemic. Genes and proteins expressed in abnormal lymph nodes of fsn-/- mice may thus influence the development or function of cells of the immune and hematopoietic system, the response of these cells in inflammatory disorders, and the responses of skin and other connective tissue cells to inflammatory signals.
There is a need in the art to identify genes encoding proteins that function to modulate all cells of the immune system. These proteins from normal or abnormal lymph nodes may be useful in modifying the immune responses to tumour cells or infectious agents such as bacteria, viruses, protozoa and worms. Such proteins may be useful in the treatment of disorders where the immune system initiates unfavourable reactions to the body, including Type I hypersensitivity reactions (such as hay fever, eczema, allergic rhinitis and asthma), and Type II hypersensitivity reactions (such as transfusion reactions and haemolytic disease of newborns). Other unfavourable reactions are initiated during Type III reactions, which are due to immune complexes forming in infected organs during persistent infection or in the lungs following repeated inhalation of materials from moulds, plants or animals, and in Type IV reactions in diseases such as leprosy, schistosomiasis and dermatitis.
Novel proteins of the immune system may also be useful in treating autoimmune diseases where the body recognises itself as foreign. Examples of such diseases include rheumatoid arthritis, Addison's disease, ulcerative colitis, dermatomyositis and lupus. Such proteins may also be useful during tissue transplantation, where the body will often recognise the transplanted tissue as foreign and attempt to kill it, and also in bone marrow transplantation when there is a high risk of graft-versus-host disease where the transplanted cells attack their host cells, often causing death.
There thus remains a need in the art for the identification and isolation of genes encoding proteins expressed in cells of the immune system for use in the development of therapeutic agents for the treatment of disorders including those associated with the immune system.
SUMMARY OF THE INVENTION
The present invention provides polypeptides and functional portions of polypeptides expressed in lymph node stromal cells of fsn -/- mice, together with polynucleotides encoding such polypeptides, expression vectors and host cells comprising such polynucleotides, and methods for their use.
In specific embodiments, isolated polypeptides are provided that comprise an amino acid sequence selected from the group consisting of sequences provided in SEQ ID NO: 11-20, 30-38, 47-53 and 59-61, and variants of such sequences, as defined herein. Isolated polypeptides which comprise at least a functional portion of a polypeptide comprising an amino acid sequence selected from the group consisting of (a) sequences provided in SEQ ID NO: 11-20, 30-38, 47-53 and 59-61; and (b) variants of a sequence of SEQ ID NO: 11-20, 30-38
Abernethy Nevin
Murison James Greg
Sleeman Matthew
Genesis Research & Development Corporation Limited
Li Ruixiang
Sleath Janet
Speckman Ann W.
Spector Lorraine
LandOfFree
Methods for enhancing immune responses by fibroblast growth... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for enhancing immune responses by fibroblast growth..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for enhancing immune responses by fibroblast growth... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3218582