Methods for determining oil in seeds

Optics: measuring and testing – By particle light scattering

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S338000

Reexamination Certificate

active

06809819

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods for analyzing agricultural products. More particularly, the present invention relates to methods for analysis of the oil content of one or more seeds.
BACKGROUND OF THE INVENTION
The improvement of techniques used for analysis of agricultural products for desired traits has long been a goal. Several methods have conventionally been used to analyze a sample for the presence of a specific trait. Quantitation of oil content of seeds is often performed with conventional methods, such as near infrared analysis (NIR), nuclear magnetic resonance imaging (NMR), soxhlet extraction, accelerated solvent extraction (ASE), microwave extraction, and super critical fluid extraction. These conventional methods, however, are often not able to accurately discern the relative or absolute levels of oil in very small seed samples.
During the past decade, near infrared (NIR) spectroscopy has become a standard method for screening seed samples whenever the sample of interest has been amenable to this technique. Samples studied include wheat, maize, soybean, canola, rice, alfalfa, oat, and others (see, for example, Massie and Norris, “Spectral Reflectance and Transmittance Properties of Grain in the Visible and Near Infrared”, Transactions of the ASAE, Winter Meeting of the American society of Agricultural Engineers, 1965, pp. 598-600, Archibald et al. “Development of Short-Wavelength Near-Infrared spectral Imaging for Grain Color Classification,” SPIE Vol. 3543, 1998, pp. 189-198, Delwiche, “Single Wheat Kernel Analysis by Near-Infrared Transmittance: Protein Content,” Analytical Techniques and Instrumentation, Vol. 72, 1995, pp. 11-16, Dowell, “Automated Color Classification of Single Wheat Kernels Using Visible and Near-Infrared Reflectance,” Vol. 75(1), 1998, pp.142-144, Orman and Schumann, “Comparison of Near-Infrared Spectroscopy Calibration Methods for the Prediction of Protein, Oil, and Starch in Maize Grain,” Vol. 39, 1991, pp.883-886, Robutti, “Maize Kernel Hardness Estimation in Breeding by Near-Infrared Transmission Analysis,” Vol. 72(6), 1995, pp.632-636, U.S. Pat. No. 5,991,025 to Wright et al., U.S. Pat. No. 5,751,421 to Wright et al., Daun et al., “Comparison of Three whole Seed Near-Infrared Analyzers for Measuring Quality Components of Canola Seed”, Vol. 71, no. 10, 1994, pp.1063-1068, all of which are herein incorporated by reference in their entirety).
NIR analysis of single seeds has been reported (see Velasco, et al., “Estimation of Seed Weight, Oil Content and Fatty Acid Composition in Intact Single Seeds of Rapeseed (
Brassica napus L
.) by Rear-Infrared Reflectance Spectroscopy,” Euphytica, Vol. 106, 1999, pp.79-85, Delwiche, “Single Wheat Kernel Analysis by Near-Infrared Transmittance: Protein Content,” Analytical Techniques and Instrumentation, Vol. 72, 1995, pp. 11-16, Dowell, “Automated Color Classification of Single Wheat Kernels Using Visible and Near-Infrared Reflectance,” Vol. 75(1), 1998, pp.142-144, Dowell et al., “Automated Single Wheat Kernel Quality Measurement Using Near-Infrared Reflectance,” ASAE Annual International Meeting, 1997, paper number 973022, all of which are herein incorporated by reference in their entirety). These methods, however, are not sensitive enough to accurately determine the oil content of very small seeds, which limits their use. NMR has also been used to analyze oil content in seeds (see, for example, Robertson and Morrison, “Analysis of Oil Content of Sunflower Seed by Wide-Line NMR,” Journal of the American Oil Chemists Society, 1979, Vol. 56, 1979, pp. 961-964, which is herein incorporated by reference in its entirety). However, this non-destructive technique is also often not suitable for the analysis of seed oil when the seed of interest is small.
Other techniques, including soxhlet extraction, accelerated solvent extraction (ASE), microwave extraction, and super critical fluid extraction, that are conventionally used to determine oil content use gravimetry as the final measurement step (see, for example, Taylor et al., “Determination of Oil Content in Oilseeds by Analytical Supercritical Fluid Extraction,” Vol. 70 (no. 4), 1993, pp. 437-439, which is herein incorporated by reference in its entirety). Gravimetry, however, is not suitable for use with small samples, including small seeds and seed with little oil content, because oil levels in these samples can be below the level of minimum sensitivity for the technique. Further, the use of gravimetry is time consuming and is not amenable to high-throughput automation.
Needed in the art are methods for rapid and accurate analysis of seed samples, and particularly small seed samples, that can be used to efficiently analyze the oil content of individual seeds and that are amenable to automation. The present invention provides such methods.
SUMMARY OF THE INVENTION
The present invention includes and provides a method for determining oil content of a seed comprising: extracting oil from a seed using a solvent; evaporating the solvent in a stream of gas to form oil particles; directing light into the stream of gas and the oil particles, thereby forming reflected light; detecting the reflected light; and, determining the oil content based on the reflected light.
The present invention includes and provides a method for determining oil content of a seed comprising extracting oil from a seed using a solvent; separating the solvent from the seed; evaporating the solvent in a stream of gas to form oil particles; directing light into the stream of gas and the oil particles, thereby forming reflected light; detecting the reflected light; and, determining the oil content based on the reflected light.
The present invention includes and provides a method for determining oil content of a seed comprising: disrupting the seed to produce ground seed; extracting oil from the ground seed using a solvent; evaporating the solvent in a stream of gas to form oil particles; directing light into the stream of gas and the oil particles, thereby forming reflected light; detecting the reflected light; determining the oil content based on the reflected light.
The present invention includes and provides a method for determining oil content of an agricultural material, comprising: extracting oil from the material using a solvent; evaporating the solvent in a stream of gas to form oil particles; directing light into the stream of gas and the oil particles, thereby forming reflected light; detecting the reflected light; and, determining the oil content based on the reflected light.
All The present invention includes and provides a method for determining oil content of a batch seed sample, comprising: extracting oil from the batch seed sample using a solvent; evaporating the solvent in a stream of gas to form oil particles; directing light into the stream of gas and the oil particles, thereby forming reflected light; detecting the reflected light; and, determining the oil content based on the reflected light.
The present invention includes and provides a method for selecting a seed having an enhanced oil content, comprising: extracting oil from a seed using a solvent; evaporating the solvent in a stream of gas to form oil particles; directing light into the stream of gas and the oil particles, thereby forming reflected light; detecting the reflected light; determining the oil content based on the reflected light; and, selecting a seed with a similar genetic background to the seed based on the oil content.
The present invention includes and provides a method of introgressing a trait into a plant comprising: extracting oil from a seed using a solvent; evaporating the solvent in a stream of gas to form oil particles; directing light into the stream of gas and the oil particles, thereby forming reflected light; detecting the reflected light; determining the oil content based on the reflected light; selecting a seed with a similar genetic background to the seed based on the oil content; growing a fertile plant from the related seed; and, utilizing the fertile p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for determining oil in seeds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for determining oil in seeds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for determining oil in seeds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3269177

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.