Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...
Reexamination Certificate
2008-06-05
2011-11-29
Navarro, Albert (Department: 1645)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving antigen-antibody binding, specific binding protein...
Reexamination Certificate
active
08067192
ABSTRACT:
Provided herein is a large immuno-sorbent surface area assay (ALISSA) for rapid and sensitive detection of toxin or enzyme activity. This assay is designed to capture a low number of toxin or enzyme molecules and to measure their intrinsic protease activity via conversion of a fluorogenic or luminescent substrate. The ALISSA is significantly faster and more sensitive than methods routinely utilized in the art. This assay is applicable for use for detection of a variety of toxins or enzymes having proteolytic activity, such as botulinum neurotoxin,bacillus anthracislethal factor, human chitinases, andaspergillus fumigatusproteases. Also provided are methods for constructing and identifying novel luminescent or fluorescent substrates suitable for use with the ALISSA method.
REFERENCES:
patent: 6504006 (2003-01-01), Shine et al.
patent: 6506006 (2003-01-01), Lui et al.
patent: 6696304 (2004-02-01), Davies
patent: 6762280 (2004-07-01), Schmidt et al.
patent: 7034107 (2006-04-01), Schmidt et al.
patent: 7157553 (2007-01-01), Schmidt et al.
patent: 7670796 (2010-03-01), Shone et al.
patent: 2004/0146963 (2004-07-01), Schmidt et al.
patent: 2005/0287622 (2005-12-01), Schmidt et al.
patent: 2008/0213255 (2008-09-01), Atassi
Witcome, Matthew et al, FEMS Immunology and Medical Microbiology, vol. 24, pp. 319-323, 1999, Development of in vitro assays for the detection of botulinum toxins in foods.
Aina, O.H. et al. From combinatorial chemistry to cancer-targeting peptides.Mol Pharm4, 631-651 (2007).
Aina, O.H. et al. Identification of novel targeting peptides for human ovarian cancer cells using “one-bead one-compound” combinatorial libraries.Mol Cancer Ther4, 806-813 (2005).
Aoki, K.R. & Guyer, B. Botulinum toxin type A and other botulinum toxin serotypes: a comparative review of biochemical and pharmacological actions.Eur J Neurol8 Suppl 5, 21-29 (2001).
Arnon, S.S. et al. Botulinum toxin as a biological weapon: medical and public health management.JAMA285, 1059-1070 (2001).
Arnon, S.S., Schechter, R., Maslanka, S.E., Jewell, N.P. & Hatheway, C.L. Human botulism immune globulin for the treatment of infant botulism.N Engl J Med354, 462-471 (2006).
Barr, J.R. et al. Botulinum neurotoxin detection and differentiation by mass spectrometry.Emerg Infect Dis11, 1578-1583 (2005).
Boyer, A.E. et al. From the mouse to the mass spectrometer: detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry.Anal Chem77, 3916-3924 (2005).
Cai, S. & Singh, B.R. Role of the disulfide cleavage induced molten globule state of type a botulinum neurotoxin in its endopeptidase activity.Biochemistry40, 15327-15333 (2001).
Cai, S., Sarkar, H.K. & Singh, B.R. Enhancement of the endopeptidase activity of botulinum neurotoxin by its associated proteins and dithiothreitol.Biochemistry38, 6903-6910 (1999).
Chao, H.Y., Wang, Y.C., Tang, S.S. & Liu, H.W. A highly sensitive immuno-polymerase chain reaction assay forClostridium botulinumneurotoxin type A.Toxicon43, 27-34 (2004).
Chen, F., Kuziemko, G.M. & Stevens, R.C. Biophysical characterization of the stability of the 150-kilodalton botulinum toxin, the nontoxic component, and the 900-kilodalton botulinum toxin complex species.Infect Immun66, 2420-2425 (1998).
Ferreira, J.L., Maslanka, S., Johnson, E. & Goodnough, M. Detection of botulinal neurotoxins A, B, E, and F by amplified enzyme-linked immunosorbent assay: collaborative study.J AOAC Int86, 314-331 (2003).
Garcia-Rodriguez, C. et al. Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin.Nat Biotechnol25, 107-116 (2007).
Juskowiak, G.L. et al. Fluorogenic peptide sequences—transformation of short peptides into fluorophores under ambient photooxidative conditions.J Am Chem Soc126, 550-556 (2004).
Kalb, S.R. et al. The use of Endopep-MS for the detection of botulinum toxins A, B, E, and F in serum and stool samples.Anal Biochem351, 84-92 (2006).
Kalb, S.R., Goodnough, M.C., Malizio, C.J., Pirkle, J.L. & Barr, J.R. Detection of botulinum neurotoxin A in a spiked milk sample with subtype identification through toxin proteomics.Anal Chem77, 6140-6146 (2005).
Kautter, D.A. & Solomon, H.M. Collaborative study of a method for the detection ofClostridium botulinumand its toxins in foods.J Assoc Off Anal Chem60, 541-545 (1977).
Kurazono, H. et al. Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum neurotoxin type A.J Biol Chem267, 14721-14729 (1992).
Lacy, D.B., Tepp, W., Cohen, A.C., DasGupta, B.R. & Stevens, R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity.Nat Struct Biol5, 898-902 (1998).
Lam, K.S. et al. Synthesis and screening of “one-bead one-compound” combinatorial peptide libraries.Methods Enzymol369, 298-322 (2003).
Liu, W., et al. Botulinum toxin type B micromechanosensor.Proc Natl Acad Sci USA100, 13621-13625 (2003).
Marks, J.D. Deciphering antibody properties that lead to potent botulinum neurotoxin neutralization.Mov Disord19 Suppl 8, S101-108 (2004).
Mason, J.T., Xu, L., Sheng, Z.M. & O'Leary, T.J. A liposome-PCR assay for the ultrasensitive detection of biological toxins.Nat Biotechnol24, 555-557 (2006).
Mason, J.T., Xu, L., Sheng, Z.M., He, J. & O'Leary, T.J. Liposome polymerase chain reaction assay for the sub-attomolar detection of cholera toxin and botulinum neurotoxin type A.Nature Protocols1, 2003-2011 (2006).
Melling, J., Hambleton, P. & Shone, C.C.Clostridium botulinumtoxins: nature and preparation for clinical use.Eye2 ( Pt 1), 16-23 (1988).
Miyawaki, A. Bringing bioluminescence into the picture.Nat Methods4, 616-617 (2007).
Paulmurugan, R. et al. Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein-protein interactions.Anal Chem79, 2346-2353 (2007).
Paulmurugan, R. et al. Firefly luciferase enzyme fragment complementation for imaging in cells and living animals.Anal Chem77, 1295-1302 (2005).
Ravichandran, E. et al. An initial assessment of the systemic pharmacokinetics of botulinum toxin.J Pharmacol Exp Ther318,1343-1351 (2006).
Rosse, G.E. et al. Rapid identification of substrates for novel proteases using a combinatorial peptide library.J Comb Chem2, 461-466 (2000).
Sakaguchi, G.Clostridium botulinumtoxins.Pharmacol Ther19, 165-194 (1982).
Schantz, E.J. & Johnson, E.A. Properties and use of botulinum toxin and other microbial neurotoxins in medicine.Microbiol Rev56, 80-99 (1992).
Schiavo, G. et al. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds.FEBS Lett335, 99-103 (1993).
Schiavo, G. et al. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E.J Biol Chem268, 23784-23787 (1993).
Schiavo, G., Matteoli, M. & Montecucco, C. Neurotoxins affecting neuroexocytosis.Physiol Rev80, 717-766 (2000).
Schmidt, J.J. & Stafford, R.G. Fluorigenic substrates for the protease activities of botulinum neurotoxins, serotypes A, B, and F.Appl Environ Microbiol69, 297-303 (2003).
Sharma, S.K., Ferreira, J.L., Eblen, B.S. & Whiting, R.C. Detection of type A, B, E, and FClostridium botulinumneurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies.Appl Environ Microbiol72, 1231-1238 (2006).
Sharma, S.K., Ramzan, M.A. & Singh, B.R. Separation of the components of type A botulinum neurotoxin complex by electrophoresis.Toxicon41, 321-331 (2003).
Simpson, L.L. et al. The role of zinc binding in the biological activity of botulinum toxin.J Biol Chem276, 27034-27041 (2001).
Smith, L.D. The occurrence ofClostridium botulinumandClostridium tetaniin the soil of the United States.Health Lab Sci15, 74-80 (1978).
Walsh, T.J. et al. Tissue homogenization with sterile reinforced polyethylene bags for quantitative culture ofCandida albicans. J Clin Microbiol25, 931-932 (1987).
Wein, L.M. & Liu, Y. Analyzin
Bagramyan Karine
Kalkum Markus
City of Hope
Navarro Albert
Perkins Coie LLP
Portner Ginny
Sliger Lauren
LandOfFree
Methods for detection of botulinum neurotoxin does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for detection of botulinum neurotoxin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for detection of botulinum neurotoxin will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4294456