Methods for detecting fraudulent instruments

Printed matter – Method

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C283S070000

Reexamination Certificate

active

06315329

ABSTRACT:

BACKGROUND OF THE INVENTION
Security instruments that have zones or snippets coated with fluorescent invisible inks are known to the prior art. Each zone or snippet will generally include an identification code, such as a binary code, to identify the individual snippets. Good examples of this technology can be understood by referring to the Edwin Greene patents; namely 4,634,184 dated Jan. 6, 1987; 4,724,309 dated Feb. 9, 1988; 4,588,211 and 5,418,853 of May 23, 1995.
With the advent of personal computers, sophisticated printers and scanners, the instances of bank fraud have increased dramatically. Relatively inexpensive computers with common printers can duplicate checks with great accuracy. It is a primary objective of this invention to confound those who would counterfeit checks and or who would alter or manufacture checks with such computer printer machines.
The technique of having identifiable snippets coated with invisible ultra violet ink or infrared ink has many important operational and security features. This invention provides security features which can be, but are not necessarily, employed with the Greene type checks.
In the art of bank fraud prevention, a Positive Pay service is an effective detection strategy. In this system, commercial customers send computer generated account files containing the MICR line data and the amounts of issued checks to their bank. When these checks are presented, the bank compares them with the data in the account files. The bank notifies the customers of any mismatches and the customer then tells the bank which checks to pay. As one can see, this system although effective, requires a significant effort from the bank and their customers.
Teller Line Positive Pay targets bad checks that are presented at the teller's windows. When tellers receive checks drawn on the customers account, they are compared against a customer's list of pre-authorized checks. The counterfeiter is caught before the check is cashed.
Also, there are devices and software where pattern recognition algorithms are used at the teller stations and/or in the check processing operations. For instance, software is available that will look for exceptional conditions such as duplicate serial numbers, out of range serial numbers or high dollar amounts when such amounts are not expected. Other technologies such as fingerprinting, iris scans and the like have been advanced but have met with limited success.
Many companies that issue hundreds or thousands of checks each month oftentimes utilize the aforementioned Positive Pay system. In these high volume systems, commercial customers send computer data containing MICR line data and the amount of all checks issued to their banks. The bank's computers automatically compare the checks with the data before payment.
FIELD OF INVENTION
The field of invention is in the use of invisible UV coated snippets upon which variable data is applied. The variable data, together with or without visible data, is entered by the check printer and the data is combined in a manner to present a plurality of obstacles to the professional or casual counterfeiter.
This invention, among its other advantages, will facilitate the use of Positive Pay services by reducing certain data to a single number. In this manner, it will make Positive Pay systems economically available to other than high volume issuers.
A principle objective of this invention is to provide a check fraud detection system that includes a plurality of UV sensitive zones or snippets on the check that contain encrypted data therein which is processed in a manner to authenticate the check with only minor involvement by the check maker.
An important objective of this invention is to print a 1 dimensional (D) or 2D bar-code on the document with either visible or invisible ink so that the history of a document can be traced in the event of a successful fraud. Bar codes can also include a wealth of other information.
Another objective of this invention is to deter would be counterfeiters with an array of intelligence on the checks, some visible and some not visible, so that the counterfeiter will be confused and make mistakes that will thwart the chance of success or facilitate capture by legal authorities.
Another objective of this invention is to allow the Bank of First Deposit or the Point of Sale to quickly determine if the check they are about to accept is a legitimate document so as to avoid the process and costs associated with fraudulent items.
Another important objective of this invention is to add supplemental machine readable information to a check so the paying bank has improved capability to automatically determine who the payee is, what reason the check was written for in the first instance and other data that can be used for marketing and security purposes.
In the course of the following description the following terms and their meanings will be used:
Maker: The person or company upon whose account the check is drawn. Also, known as the issuer.
Payee: The person to whom the instrument is to be paid.
Payor: Also, referred to as the “maker”.
The Bank: The financial institution in which the maker has the funds.
Bank of first deposit: The bank to which the check is first presented.
Point of Sale: The first point the check is presented if not at a bank.
Check Printer: The actual printer of the check who supplies them to the maker.
UV Smart: Technology described in the Greene patents.
MICR: Magnetic Ink Character Recognition
If a counterfeit or altered check makes it past the teller or Point of Sale, there are several other strategies on the check that a merchant, a depository bank or the drawing bank can utilize to detect the bad check before payment.
Embodiments of the invention will now be explained by way of examples with reference to the drawings.


REFERENCES:
patent: 4588211 (1986-05-01), Greene
patent: 4634149 (1987-01-01), Greene
patent: 4724309 (1988-02-01), Greene
patent: 5456498 (1995-10-01), Greene
patent: 5650248 (1997-07-01), Miekka et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for detecting fraudulent instruments does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for detecting fraudulent instruments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for detecting fraudulent instruments will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2612030

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.