Chemistry: analytical and immunological testing – Nuclear magnetic resonance – electron spin resonance or other...
Reexamination Certificate
2011-06-21
2011-12-27
Warden, Jill (Department: 1773)
Chemistry: analytical and immunological testing
Nuclear magnetic resonance, electron spin resonance or other...
Reexamination Certificate
active
08084269
ABSTRACT:
Provided are methods of detecting the presence or amount of a dihydroxyvitamin D metabolite in a sample using mass spectrometry. The methods generally comprise ionizing a dihydroxyvitamin D metabolite in a sample and detecting the amount of the ion to determine the presence or amount of the vitamin D metabolite in the sample. In certain preferred embodiments the methods include immunopurifying the dihydroxyvitamin D metabolites prior to mass spectrometry. Also provided are methods to detect the presence or amount of two or more dihydroxyvitamin D metabolites in a single assay.
REFERENCES:
patent: 5772874 (1998-06-01), Quinn et al.
patent: 5795469 (1998-08-01), Quinn et al.
patent: 5919368 (1999-07-01), Quinn et al.
patent: 5968367 (1999-10-01), Quinn et al.
patent: 6107623 (2000-08-01), Bateman et al.
patent: 6124137 (2000-09-01), Hutchens et al.
patent: 6204500 (2001-03-01), Whitehouse et al.
patent: 6268144 (2001-07-01), Koster
patent: 6787660 (2004-09-01), Armbruster et al.
patent: 6977143 (2005-12-01), Caulfield et al.
patent: 7087395 (2006-08-01), Garrity et al.
patent: 7321116 (2008-01-01), Picard et al.
patent: 7348137 (2008-03-01), Caulfield et al.
patent: 7473560 (2009-01-01), Soldin
patent: 7618827 (2009-11-01), Steven
patent: 7745226 (2010-06-01), Clarke et al.
patent: 2003/0171605 (2003-09-01), Reddy et al.
patent: 2004/0235193 (2004-11-01), Soldin
patent: 2006/0054807 (2006-03-01), Picard et al.
patent: 2006/0094125 (2006-05-01), Singh et al.
patent: 2006/0228808 (2006-10-01), Clarke et al.
patent: 2006/0228809 (2006-10-01), Clarke et al.
patent: 2007/0139956 (2007-06-01), Sugimoto et al.
patent: 2008/0241955 (2008-10-01), Purkayastha et al.
patent: 2009/0137056 (2009-05-01), Holmquist et al.
patent: WO-95/33279 (1995-12-01), None
patent: WO-96/18618 (1996-06-01), None
patent: WO-2007/039193 (2007-04-01), None
patent: WO-2007/139956 (2007-12-01), None
patent: WO-2008/097246 (2008-08-01), None
Armas et. al, Vitamin D2 Is Much Less Effective than Vitamin D3 in Humans, J. Clin. Endocrinol. Metab. 89:5387-5391 (2004).
Aronov et al, Metabolic profiling of major vitamin D metabolites using Diels-Alder derivatization and ultra-performance liquid chromatography—tandem mass spectrometry, Anal Bioanal Chem, 2008, 391:1917-1930.
Ascalone et al, Stereospecific determination of amisulpride, a new benzamide derivative, in human plasma and urine by automated solid-phase extraction and liquid chromatography on a chiral column. application to pharmacokinetics, Journal of Chromatography B., 676:95-105, 1996.
Bartolucci, et al., Liquid chromatography tandem mass spectrometric quantitation of sulfamethazine and its metabolites: direct analysis of swine urine by triple quadrupole and by ion trap mass spectrometry, Rapid Commun. Mass Spectrom, 14:967-73 (2000).
Busch, A Glossary for Mass Spectrometry, Mass Spectrometry, 17(65)526-534, 2002.
Capote et al, Identification and determination of fat-soluble vitamins and metabolites in human serum by liquid chromatography/triple quadrupole mass spectrometry with multiple reaction monitoring, Rapid Commun. Mass. Spectrom., 21:1745-1754, 2007.
Coldwell et al, Mass Fragmentographic Assay for 25-Hydroxyvitamin D in Plasma Without Derivatization: Enhanced Sensitivity for Metabolites of Vitamins D2 and D3 After Pre-column Dehydration, Journal of Mass Spectrometry, 30:348-356, (1995).
Coldwell et al, Stable isotope-labeled vitamin D, metabolites and chemical analogs: synthesis and use in mass spectrometric studies, Steroids, 55: 418-432, 1990.
Coldwell et al., Measurement of Vitamins D2 and D3 and Seven Major Metabolites in a Single Sample of Human Plasma Using Gas Chromatography/Mass Spectrometry, Biomedical and Environmental Mass Spectrometry, 16:81-85 (1988).
Extended Search Report dated Feb. 2, 2009 in EP application 06749272.
Extended Search Report dated Dec. 22, 2010 in EP application 08853843.
Guo et al, Steroid profiles using liquid chromatography—Tandem mass spectrometry with atmospheric pressure photoionization source, Arch Pathol Lab Med., 128: 469-475, 2004.
Higashi et al, Characterization of new conjugated metabolites in bile of rats administered 24,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3, Steroids, 65(5):281-94 (2000).
Higashi et al, Characterization of urinary metabolites of vitamin D3 in man under physiological conditions using liquid chromatography—tandem mass spectrometry, J Pharm Biomed Anal. 29(5):947-55 (2002).
Higashi et al, Liquid chromatography-tandem mass spectrometric method for the determination of salivary 25-hydroxyvitamin D3: a noninvasive tool for the assessment of vitamin D status, Anal. Bioanal Chem, 2008, 391:229-238.
Higashi et al, Simultaneous Determination of 25-Hydroxyvitamin D2 and 25-Hydroxyvitamin D3 in Human Plasma by Liquid Chromatography—Tandem Mass Spectrometry Employing Derivatization with a Cookson-Type Reagent, Biol Pharm Bull., 24(7):738-43, (2001).
International Preliminary Report on Patentability dated Oct. 9, 2007 in application PCT/US2006/012539.
International Preliminary Report on Patentability dated Jun. 1, 2010 in application PCT/US2008/084709.
International Search Report and Written Opinion dated Jan. 26, 2011 in application PCT/US2010/056461.
International Search Report and Written Opinion dated Jan. 27, 2011 in application PCT/US2010/057627.
International Search Report and Written Opinion dated Feb. 7, 2011 in application PCT/US2010/059765.
International Search Report and Written Opinion dated Feb. 8, 2011 in application PCT/US2010/059746.
International Search Report dated Feb. 24, 2009 in application PCT/US2008/084709.
International Search Report dated Jan. 14, 2011 in PCT/US2010/056886.
International Search Report dated Jan. 4, 2007 in application PCT/US2006/012539.
International Search Report dated Feb. 11, 2011 in application PCT/US2010/059771.
Interview Summary dated Jan. 28, 2009 in application 11/101,166.
Jemal, High-throughput quantitative bioanalysis by LC/MS/MS, Biomedical Chromatography, 14:422-429, 2000.
Jones et al, Biological activity of I,25-Dihydroxyvitamin D2 in the Chick, Biochemistry, 15(3): 713-716, 1976.
Jones et al, Current understanding of the molecular actions of Vitamin D, Physiological Reviews, 78(4): 1193-1231, 1998.
Jones et al, Vitamin Ds: Metabolites and Analogs, Chapter 2 in Modern Chromatographic Analysis of Vitamins, Third Edition, 2002, 79 pgs.
Kamao et al, C-3 Epimerization of Vitamin D3 metabolites and further metabolism of C-3 epimers, The Journal of Biological Chemistry, 279 (16):15897-15907, (2004).
Kissmeyer et al, Sensitive analysis of 1a,25-dihydroxyvitamin D3 in biological fluids by liquid chromatography—tandem mass spectrometry, J Chromatogr A., 935(1-2):93-103 (2001).
Kobayashi et al, Tandem immunoaffinity chromatography for plasma 1a,25-dihydroxyvitamin D3 utilizing two antibodies having different specificities: A novel and powerful pretreatment tool for 1a,25-dihydroxyvitamin D3 radioreceptor assays, J.Steroid Biochem. Molec. Biol., 54(5/6): 217-226, 1995.
Kobayashi, et al, Production of a group-specific antibody to 1 alpha,25-dihydroxyvitamin D and its derivatives having the 1 alpha,3 beta-dihydroxylated A-ring structure, Steroids, (1994), 59(7):404-11.
Letter from Vicki G. Norton, Ph.D. Partner, Duane Morris LLP, Sep. 4, 2008.
Maunsell et al, Routine Isotope-Dilution Liquid Chromatography—Tandem Mass Spectrometry Assay for Simultaneous Measurement of the 25-Hydroxy Metabolites of Vitamins D2 and D3, Clinical Chemistry, 51:9 1683-1690, (2005).
Merchant et al, Recent advancements in surface-enhanced laser desorption/ionization—time of flight—mass spectrometry, Electrophoresis 21:1164-1177 (2000).
Miller et al, Genetic causes of rickets, Current Opinions in Pediatrics, 11:333-339, 1999.
Odrzywolska et al, Convergent Synthesis, Chiral HPLC, and Vitamin D Receptor Affinity of Analogs of 1,25-Dihydroxycholecalciferol, Chirality, 11:249-255, (1999).
Office Action dated Sep. 29, 2009 for EP Application No. 06749272.8.
Polson et al, Optimization of protein precipitation based upon effecti
Clarke Nigel
Holmquist Brett
Cole Monique
Foley & Lardner LLP
Quest Diagnostics Investments Incorporated
Warden Jill
LandOfFree
Methods for detecting dihydroxyvitamin D metabolites by mass... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for detecting dihydroxyvitamin D metabolites by mass..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for detecting dihydroxyvitamin D metabolites by mass... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4255390