Multicellular living organisms and unmodified parts thereof and – Method of making a transgenic nonhuman animal – Via retrovirus
Reexamination Certificate
2000-02-11
2003-04-15
Priebe, Scott D. (Department: 1632)
Multicellular living organisms and unmodified parts thereof and
Method of making a transgenic nonhuman animal
Via retrovirus
C800S021000, C800S025000, C800S015000, C435S325000, C435S455000, C435S456000
Reexamination Certificate
active
06548740
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to improved methods for the generation of transgenic non-human animals. In particular, the present invention relates to the introduction of retroviral particles into the perivitelline space of gametes, zygotes and early stage embryos to allow the insertion of genetic material into the genome of the recipient gamete or embryo.
BACKGROUND
The ability to alter the genetic make-up of animals, such as domesticated mammals such as cows, pigs and sheep, allows a number of commercial applications. These applications include the production of animals which express large quantities of exogenous proteins in an easily harvested form (e.g., expression into the milk), the production of animals which are resistant to infection by specific microorganisms and the production of animals having enhanced growth rates or reproductive performance. Animals which contain exogenous DNA sequences in their genome are referred to as transgenic animals.
The most widely used method for the production of transgenic animals is the microinjection of DNA into the pronuclei of fertilized embryos. This method is efficient for the production of transgenic mice but is much less efficient for the production of transgenic animals using large mammals such as cows and sheep. For example, it has been reported that 1,000 to 2,000 bovine embryos at the pronuclear stage must be microinjected to produce a single transgenic cow at an estimate cost of more than $500,000 [Wall et al. (1992) J. Cell. Biochem. 49:113]. Furthermore, microinjection of pronuclei is more difficult when embryos from domestic livestock (e.g., cattle, sheep, pigs) is employed as the pronuclei are often obscured by yolk material. While techniques for the visualization of the pronuclei are known (i.e., centrifugation of the embryo to sediment the yolk), the injection of pronuclei is an invasive technique which requires a high degree of operator skill.
Alternative methods for the production include the infection of embryos with retroviruses or with retroviral vectors. Infection of both pre- and post-implantation mouse embryos with either wild-type or recombinant retroviruses has been reported [Janenich (1976)
Proc. Natl. Acad. Sci. USA
73:1260-1264; Janenich et al. (1981) Cell 24:519; Stuhlmann et al. (1984)
Proc. Natl. Acad. Sci. USA
81:7151; Jahner et al. (1985)
Proc. Natl. Acad Sci. USA
82:6927-6931; Van der Putten, et al. (1985)
Proc. Natl. Acad Sci. USA
82:6148-6152; Stewart, et al. (1987)
EMBO J.
6:383-388]. The resulting transgenic animals are typically mosaic for the transgene since incorporation occurs only in a subset of cells which form the transgenic animal. The consequences of mosaic incorporation of retroviral sequences (i.e., the transgene) include lack of transmission of the transgene to progeny due to failure of the retrovirus to integrate into the germ line, difficulty in detecting the presence of viral sequences in the founder mice in those cases where the infected cell contributes to only a small part of the fetus and difficulty in assessing the effect of the genes carried on the retrovirus.
In addition to the production of mosaic founder animals, infection of embryos with retrovirus (which is typically performed using embryos at the 8 cell stage or later) often results in the production of founder animals containing multiple copies of the retroviral provirus at different positions in the genome which generally will segregate in the offspring. Infection of early mouse embryos by co-culturing early embryos with cells producing retroviruses requires enzymatic treatment to remove the zona pellucida [Hogan et al. (1994) in
Manipulating the Mouse Embryo: A Laboratory Manual,
2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 251-252]. In contrast to mouse embryos, bovine embryos dissociate when removed from the zona pellucida. Therefore, infection protocols which remove the zona pellucida cannot be employed for the production of transgenic cattle or other animals whose embryos dissociate or suffer a significant decrease in viability upon removal of the zona pellucida (e.g., ovine embryos).
An alternative means for infecting embryos with retroviruses is the injection of virus or virus-producing cells into the blastocoele of mouse embryos [Jahner, D. et al. (1982)
Nature
298:623-628]. As is the case for infection of eight cell stage embryos, most of the founders produced by injection into the blastocoele will be mosaic. The introduction of transgenes into the germline of mice has been reported using intrauterine retroviral infection of the midgestation mouse embryo [Jahner, D. et al. (1982) supra]. This technique suffers from a low efficiency of generation of transgenic animals and in addition produces animals which are mosaic for the transgene.
Infection of bovine and ovine embryos with retroviruses or retroviral vectors to create transgenic animals has been reported. These protocols involve the micro-injection of retroviral particles or growth arrested (i.e., mitomycin C-treated) cells which shed retroviral particles into the perivitelline space of fertilized eggs or early embryos [PCT International Application WO 90/08832 (1990) and Haskell and Bowen (1995) Mol. Reprod. Dev. 40:386]. PCT International Application WO 90/08832 describes the injection of wild-type feline leukemia virus B into the perivitelline space of sheep embryos at the 2 to 8 cell stage. Fetuses derived from injected embryos were shown to contain multiple sites of integration. The efficiency of producing transgenic sheep was low (efficiency is defined as the number of transgenics produced compared to the number of embryos manipulated); only 4.2% of the injected embryos were found to be transgenic.
Haskell and Bowen (supra) describe the micro-injection of mitomycin C-treated cells producing retrovirus into the perivitelline space of 1 to 4 cell bovine embryos. The use of virus-producing cells precludes the delivery of a controlled amount of viral particles per embryo. The resulting fetuses contained between 2 and 12 proviruses and were shown to be mosaic for proviral integration sites, the presence of provirus, or both. The efficiency of producing transgenic bovine embryos was low; only 7% of the injected embryos were found to be transgenic.
The art needs improved methods for the production of transgenic animals, particularly for the production of transgenics using large domestic livestock animals. The ideal method would be simple to perform and less invasive than pronuclear injection, efficient, would produce mosaic transgenic founder animals at a low frequency and would result in the integration of a defined number of copies of the introduced sequences into the genome of the transgenic animal.
SUMMARY OF THE INVENTION
The present invention provides improved methods and compositions for the production of transgenic non-human animals. In one embodiment, the present invention provides a composition comprising a non-human unfertilized oocyte comprising a heterologous oligonucleotide (i.e., a heterologous polynucleotide) integrated into the genome of the oocyte. In a preferred embodiment the unfertilized oocyte is a pre-maturation oocyte. In another preferred embodiment the unfertilized oocyte is a pre-fertilization oocyte. The present invention is not limited by the nature of the heterologous oligonucleotide contained within the genome of the oocyte. In a preferred embodiment, the heterologous oligonucleotide is the proviral form of a retroviral vector.
The invention is not limited by the nature of the retroviral vector employed. Retroviral vectors containing a variety of genes may be employed. For example, the retroviral vector may contain sequences encoding proteins which modify growth rate, size and/or carcass composition (e.g., bovine growth hormone or other growth hormones) or foreign proteins of commercial value that are expressed in, and harvested from, a particular tissue component (e.g., blood or milk). The retrovir
Bremel Robert D.
Burns Jane C.
Chan Anthony W.S.
Paras, Jr. Peter
Priebe Scott D.
Quarles & Brady LLP
Wisconsin Alumni Research Foundation
LandOfFree
Methods for creating transgenic animals does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for creating transgenic animals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for creating transgenic animals will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3063714