Buoys – rafts – and aquatic devices – Swimming aid to increase stroke efficiency – Foot attached
Reexamination Certificate
2000-08-01
2002-07-02
Swinehart, Ed (Department: 3617)
Buoys, rafts, and aquatic devices
Swimming aid to increase stroke efficiency
Foot attached
Reexamination Certificate
active
06413133
ABSTRACT:
BACKGROUND
1. Field of Invention
This invention relates to hydrofoils, specifically to such devices which are used to create directional movement relative to a fluid medium, and this invention also relates to swimming aids, specifically to such devices which attach to the feet of a swimmer and create propulsion from a kicking motion.
2. Description of Prior Art
None of the prior art fins provide methods for maximizing the storage of energy during use or maximizing the release of such stored energy in a manner that produces significant improvements in efficiency, speed, and performance.
No prior fin designs employ adequate or effective methods for reducing the blade's angle of attack around a transverse axis sufficiently enough to reduce drag and create lift in a significantly consistent manner on both relatively light and relatively hard kicking strokes.
Prior art beliefs, convictions, and design principles teach that highly flexible blades are not effective for producing high swimming speeds. Such prior principles teach that high flexibility wastes energy since it permits kicking energy to be wasted in deforming the blade rather than pushing water backward to propel the swimmer forward. A worldwide industry convention among fin designers, manufactures, retailers and end users is that the more flexible the blade, the less able it is to produce power and high speed. The industry also believes that the stiffer the blade, the less energy is wasted deforming on the blade and the more effective the fin is at producing high speeds. The reason the entire industry believes this to be true is that no effective methods have existed for designing blades and load bearing ribs that exhibit large levels of blade deflection around a transverse axis in a manner that is capable of producing ultra-high swimming speeds. Prior fin design principles also teach that the greater the degree of blade deflection around a transverse axis on each opposing kicking stroke, the greater the degree of lost motion that occurs at the inversion point of each stroke where the blade pivots loosely from the high angle of deflection on one stroke, through the blade's neutral position, and finally to the high angle of deflection on the opposite stroke. Prior principles teach that lost motion wastes kicking energy throughout a significantly wide range of each stroke because kicking energy is expended on reversing the angle of the blade rather that pushing water backward. Also, prior swim fin design principles teach that the greater the degree of flexibility and range of blade deflection, the greater the degree of lost motion and the larger the portion of each kicking stroke that is wasted on deflecting the blade and the smaller the portion of the stroke that is used for creating propulsion. Furthermore, prior principles teach that such highly deflectable blades are vulnerable to over deflection during hard kicks when high swimming speeds are required. Although it is commonly known that highly deflectable blades create lower strain and are easier to use at slow speeds, such highly deflectable blades are considered to be undesirable and unmarketable since prior versions have proven to not work well when high swimming speeds are required.
Because prior fins are made significantly stiff to reduce lost motion between strokes as well as to reduce excessive blade deflection during hard kicks, prior fins place the blade at excessively high angles of attack during use. This prevents water from flowing smoothly around the low-pressure surface or lee surface of the blade and creates high levels of turbulence. This turbulence creates stall conditions that prevent the blade from generating lift and also create high levels of drag.
Since the blade remains at a high angle of attack that places the blade at a significantly horizontal orientation while the direction of kicking occurs in a vertical direction, most of the swimmer's kicking energy is wasted pushing water upward and downward rather that pushing water backward to create forward propulsion. When prior fins are made flexible enough to bend sufficiently around a transverse axis to reach an orientation capable of pushing water in a significantly backward direction, the lack of bending resistance that enables the blade to deflect this amount also prevents the blade from exerting a significant backward force upon the water and therefore propulsion is poor. This lack of bending resistance also subjects the blade to high levels of lost motion and enables the blade to deflect to an excessively low angle of attack during a hard kick that is incapable of producing significant lift. In addition, prior fin design methods that could permit such high deflections to occur do not permit significant energy to be stored in the fin during use and the fin does not snap back with significant energy during use. Again, a major dilemma occurs with prior fin designs: poor performance occurs when the fin is too flexible as well as when it is too stiff.
One of the major disadvantages that plague prior fin designs is excessive drag. This causes painful muscle fatigue and cramps within the swimmer's feet, ankles, and legs. In the popular sports of snorkeling and SCUBA diving, this problem severely reduces stamina, potential swimming distances, and the ability to swim against strong currents. Leg cramps often occur suddenly and can become so painful that the swimmer is unable to kick, thereby rendering the swimmer immobile in the water. Even when leg cramps are not occurring, the energy used to combat high levels of drag accelerates air consumption and reduces overall dive time for SCUBA divers. In addition, higher levels of exertion have been shown to increase the risk of attaining decompression sickness for SCUBA divers. Excessive drag also increases the difficulty of kicking the swim fins in a fast manner to quickly accelerate away from a dangerous situation. Attempts to do so, place excessive levels of strain upon the ankles and legs, while only a small increase in speed is accomplished. This level of exertion is difficult to maintain for more than a short distance. For these reasons scuba divers use slow and long kicking stokes while using conventional scuba fins. This slow kicking motion combines with low levels of propulsion to create significantly slow forward progress.
Prior art fin designs do not employ efficient methods for enabling the blade to bend around a transverse axis to sufficiently reduced angles of attack that are capable of generating lift while also providing efficient and effective methods for enabling such reduced angles of attack to occur consistently on both light and hard kicking strokes.
Prior art fins often allow the blade to flex or bend around a transverse axis so that the blade's angle of attack is reduced under the exertion of water pressure. Although prior art blades are somewhat flexible, they are usually made relatively stiff so that the blade has sufficient bending resistance to enable the swimmer to push against the water without excessively deflecting the blade. If the blade bends too far, then the kicking energy is wasted on deforming the blade since the force of water applied to the blade is not transferred efficiently back to the swimmers foot to create forward movement. This is a problem if the swimmer requires high speed to escape a dangerous situation, swim against a strong current, or to rescue another swimmer. If the blade bends too far on a hard kick, the swimmer will have difficulty achieving high speeds. For this reason, prior fins are made sufficiently stiff to not bend to an excessively low angle of attack during hard and strong kicking stokes.
Because prior fin blades are made stiff enough so that they do not bend excessively under the force of water created during a hard kick, they are too stiff to bend to a sufficiently reduced angle of attack during a relatively light stroke used for relaxed cruising speeds. If a swim fin blade is made flexible enough to deflect to a sufficiently reduced angle of attack during a light kic
Knobbe Martens Olson & Bear LLP
Swinehart Ed
LandOfFree
Methods for creating consistent large scale blade deflections does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for creating consistent large scale blade deflections, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for creating consistent large scale blade deflections will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2822317