Land vehicles – Wheeled – Attachment
Reexamination Certificate
2001-04-06
2003-02-11
Johnson, Brian L. (Department: 3618)
Land vehicles
Wheeled
Attachment
C701S045000
Reexamination Certificate
active
06517107
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of sensing, detecting, monitoring and identifying various objects, and parts thereof, which are located within the passenger compartment of a motor vehicle. In particular, the present invention provides improvements to ultrasonic transducers, and systems of such transducers, which improve the speed and/or accuracy and tend to reduce the cost and complexity of systems, and which are efficient and highly reliable for detecting a particular object such as a rear facing child seat (RFCS), situated in the passenger compartment in a location where it may interact with a deploying airbag, or for detecting an out-of-position occupant. This permits the selective suppression of airbag deployment when the deployment may result in greater injury to the occupant than the crash forces. In the alternative, it permits the tailoring of the airbag deployment to the particular occupant and in consideration of the position of the occupant. This is accomplished in part through (i) the use of a tubular mounting structure for the transducers; (ii) the use of electronic reduction or suppression of transducer ringing; (iii) the use of mechanical damping of the transducer cone, all three of which permits the use of a single transducer for both sending and receiving; (iv) the use of multiple frequencies thereby permitting the simultaneous transmission of all transducers thereby reducing the time and increasing the accuracy of dynamic occupant position measurements; (v) the use of shaped horns, grills and reflectors for the output of the transducers to precisely control the beam pattern and thereby minimizing false echoes; (vi) the use of a logarithmic compression amplifier to minimize the effects of thermal gradients in the vehicle; (vii) the use of a method of temperature compensation based on the change in transducer properties with temperature; and/or (viii) the use of a dual level network, one level for categorization and the second for occupant position sensing, to improve the accuracy of categorization and the speed of position measurement for dynamic out-of-position. The foregoing can be used individually or in combination with one another.
BACKGROUND OF THE INVENTION
In 1984, the National Highway Traffic Safety Administration (NHTSA) of the U.S. Department of Transportation issued a requirement for frontal crash protection of automobile occupants. This regulation mandated “passive occupant restraints” for all passenger cars by 1992. A more recent regulation requires both driver and passenger side airbags on all passenger cars and light trucks by 1998. In addition, the demand for airbags is accelerating in both Europe and Japan and it is expected that, now virtually all vehicles produced in these areas (36 million vehicles) are equipped and eventually worldwide (50 million vehicles) will be equipped with airbags as standard equipment.
Whereas thousands of lives have been saved by airbags, significant improvements can be made. As discussed in detail in U.S. Pat. No. 5,653,462 referenced above, and included herein by reference, for a variety of reasons, vehicle occupants can be or get too close to the airbag before it deploys and can be seriously injured or killed by the deployment of the airbag.
Also, a child in a rear facing child seat, which is placed on the right front passenger seat, is in danger of being seriously injured if the passenger airbag deploys. This has now become an industry-wide concern and the US automobile industry is urgently searching for an easy, economical solution, which will prevent the deployment of the passenger side airbag if a rear facing child seat is present. An improvement on the invention disclosed in the above-referenced patent application, as will be disclosed in greater detail below, includes more sophisticated means to identify objects within the passenger compartment and will solve this problem.
Initially, these systems will solve the out-of-position occupant and the rear facing child seat problems related to current airbag systems and prevent unneeded deployments when a seat is unoccupied. Airbags are now under development to protect rear seat occupants in frontal and side vehicle crashes. A system will therefore be needed to detect the presence and position of occupants, to determine if they are out-of-position, and type to identify the presence of a rear facing child seat in the rear seat, for example. Future automobiles can be expected to have eight or more airbags as protection is sought for rear seat occupants and from side impacts. In addition to eliminating the disturbance of unnecessary airbag deployments, the cost of replacing these airbags will be excessive if they all deploy in an accident. The improvements described below minimize this cost by not deploying an airbag for a seat that is not occupied by a human being. An occupying item of a seat may be a living occupant such as a human being or dog, another living organism such as a plant, or an inanimate object such as a box or bag of groceries.
A device to monitor the vehicle interior and identify its contents is needed to solve these and many other problems. For example, once a Vehicle Interior Identification and Monitoring System (VIMS) for identifying and monitoring the contents of a vehicle is in place, many other products become possible including the following:
1. Inflators now exist which will adjust the amount of gas flowing to the airbag to account for the size and position of the occupant and for the severity of the accident. The vehicle identification and monitoring system of this invention will control such inflators based on the presence and position of vehicle occupants or of a rear facing child seat.
2. Side impact airbag systems began appearing on 1995 vehicles. The danger of deployment induced injuries exist for side impact airbags as they now do for frontal impact airbags. A child with his head against the airbag is such an example. The system of this invention will minimize such injuries.
3. Future vehicles may be provided with a standard cellular phone as well as the Global Positioning System (GPS), an automobile navigation or location system, which is now available on several vehicle models. In the event of an accident, the phone may automatically call 911 for emergency assistance and report the exact position of the vehicle. If the vehicle also has a system as described below for monitoring each seat location, the number and perhaps the condition of the occupants could also be reported. In that way, the emergency service (EMS) would know what equipment and how many ambulances to send to the accident site.
4. Vehicle entertainment system engineers have stated that the quality of the sound in the vehicle could be improved if the number, size and location of occupants and other objects were known. This information can be provided by the vehicle interior identification and monitoring system of this invention.
5. Similarly to the entertainment system, the heating, ventilation and air conditioning system (HVAC) could be improved if the number, attributes and location of vehicle occupants were known. This can be used to provide a climate control system tailored to each occupant, for example, or the system can be turned off for certain seat locations if there are no occupants present at those locations.
6. In some cases, the position of a particular part of the occupant is of interest such as: (a) the occupant's hand or arm and whether it is in the path of a closing window so that the motion of the window needs to be stopped; (b) the position of the occupant's shoulder so that the seat belt anchorage point can be adjusted for the best protection of the occupant; or, (c) the position of the rear of the occupant's head so that the headrest can be adjusted to minimize whiplash injuries in rear impacts.
The above applications illustrate the wide range of opportunities that become available if the identity and location of various objects and occupants, and some of their parts, within the vehicle were known.
Breed David S.
DuVall Wilbur E.
Johnson Wendell C.
Automotive Technologies International Inc.
Fischmann Bryan
Johnson Brian L.
Roffe Brian
LandOfFree
Methods for controlling a system in a vehicle using a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods for controlling a system in a vehicle using a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for controlling a system in a vehicle using a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3133021