Methods and systems for strategic priority order tracking

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C707S793000

Reexamination Certificate

active

06684213

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally, to systems and methods for computerized order tracking and, more particularly, to systems and methods for computerized tracking of order information contained in Legacy databases.
BACKGROUND OF THE INVENTION
Telecommunication service providers, such as the Regional Bell Operating Companies (“RBOCs”), frequently have large customer service orders with other telecommunications companies. Such large service orders generally involve the design of telecommunication circuits and then the testing of the circuits. It is imperative to both the service provider and the customer that these orders get completed on time.
As a result, the RBOCs utilize Network Provisioning Resolution Centers (“NPRC”) to monitor the progress of these large service customer orders. The NPRC monitors the progress of the orders and alerts various concerned parties about the status of the orders. The NPRC gathers information from databases in the Legacy systems in order to retrieve the information necessary to monitor the orders.
For the RBOCs, the Legacy systems include a collection of databases established by the Bell System and currently managed by Telcordia. The databases accessed by the NPRC are the: Trunk Integrated Record Keeping System (“TIRKS”), Service Order Analysis and Control (“SOAC”), Service Order Communications System (“SOCS”), Work and Force Administration/Control (“WFA/C”), Work and Force Administration/Dispatch In (“WFA/DI”), Work and Force Administration/Dispatch Out (“WFA/DO”), Digital Provisioning (“DPRO”), and Loop Facility Assignment Control System (“LFACS”). These databases are on different computer platforms and utilize different operating systems and database software. Each database contains certain information used by the NPRC to assist it in tracking orders.
TIRKS supports the total circuit provisioning process. The data and documents contained in TIRKS include: circuit order control, circuit design, inventory record maintenance, selection and assignment of components of inventory work order generation to satisfy requests for communication services, and construction planning and forecasting.
SOAC receives service orders from the service order processor (“SOP”), parses the Field Identifiers (“FIDs”) and Universal Service Order Codes (“USOCs”), generates loop facility and central office assignment requests, and sends assigned orders back to the SOP and to other provisioning systems.
The primary function of SOCS is the real-time routing of formatted service orders via the Queued Message Service/BellSouth Open System Information Platform (“QMS/BOSIP”) to physical printers, PCs, and mini-computers to support the provisioning and completion of service orders. SOCS is responsible for the collection, storage, and distribution of service orders to all user departments, including the service order driven mechanized systems. This system routes service orders to over one hundred thirteen separate entities and feeds over twenty-five other mechanized systems that are needed to provide service to the customer and bill the customer. SOCS is also responsible for producing administrative reports.
The WFA systems are Telcordia application products that help coordinate personnel assignments and manage/automate the tasks required to install and repair facilities, trunks, special service circuits, and residential lines. WFA/C coordinates and tracks installation and maintenance activity of the entire circuit, from design to completion, and provides ready access to detailed circuit records and circuit history data. WFA/DI automates the work assignments of central office technicians to install and maintain “designed” as well as certain “non-designed” services. WFA/DO supports the outside field technicians for Special Services (“SSIM”), and the inside personnel in the Special Service Dispatch Administration Center (“SSDAC”). The system eliminates the paper flow and manual work involved in administration of the SSIM dispatch, and provides pricing and loading for these personnel.
DPRO is designed to reduce the provisioning interval for DS
1
(DS
1
and above is a measure of digital bandwidth that exceeds 1.544 MB) services to external customers by automating the information flow from SOAC/SOCS through DPRO, with data from LFACS and Loop Electronics Inventory Module (“LEIM”), to TIRKS. DPRO provides span design information from Outside Plant Engineering (“OSPE”) to all appropriate downstream organizations.
The current NPRC process for monitoring orders is a highly manual and time consuming process. Much time is spent performing manual inquiries into the Legacy system databases, recording information and making notes, organizing by priorities, marking calendars for follow up, and determining what needs to be done next. The manual tracking of orders carries with it the risks of miscommunication, lack of standardization, and improper prioritization. The existing manual, paper-based process is shown in FIG.
1
.
First, order printouts of the top priority orders that need to be monitored are periodically collected and physically delivered to an NPRC representative. At the NPRC, the orders are logged, separated, and filed in folders. An NPRC representative must then access each Legacy system separately to individually check the status of each order. Each Legacy system has some of the information necessary to check the status of an order. An NPRC representative accesses the Legacy systems through a character user interface (“CUI”) on a personal computer. As a result, an NPRC representative must have several “green screens” open at once and must navigate through the non-user-friendly Legacy systems. This is not a point and click environment. The user must open several screens from different databases to obtain the necessary information. The user cannot maneuver back and forth from screen to screen in this environment with a click of the mouse or the “Back” and “Forward” buttons of a web browser as computer users are so accustomed to today. Additionally, the user must examine multiple screens, up to ninety-five Legacy transactions per order, looking for all the necessary information. It cannot be gleaned simply from a single screen. This is time consuming and uses valuable human resources.
Once the NPRC has the status for an order, the status of the order is then manually filed in paper form. Based on the written status and manual prioritization, an NPRC representative makes follow-up calls to those people or organizations who must be informed of the status of certain orders. An NPRC representative then marks any necessary follow ups for particular orders on a physical calendar and must continue to monitor the status.
There are numerous problems with this manual process. First, the manual process is very cumbersome and time consuming, and thus the number of orders that can be managed efficiently is limited. This results in orders that are not managed at all or are managed inefficiently, which in turn results in deadlines being missed and dissatisfied customers. Additionally, when intermediate deadlines are missed, the targeted interval is shortened for the portion of the provisioning at the end of the work period, which results in inefficiency of scheduling and increased overtime. All of these problems result in lost revenue.
SUMMARY OF THE INVENTION
The present invention interacts with all necessary Legacy systems providing the key provisioning centers with the ability to track orders both in their respective systems as well as through the overall “big picture” of the order's lifecycle. This allows users quicker access to key data from several systems in a single place rather then having to review several different systems at the same time. The presentation of the critical fields together and the application of business logic to prioritize these orders helps the various provisioning center users better control the provisioning process.
The present invention collects service order information from various Legacy systems and provides a sorted and ordere

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and systems for strategic priority order tracking does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and systems for strategic priority order tracking, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and systems for strategic priority order tracking will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3207513

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.