Methods and systems for seed planting management and control

Planting – Miscellaneous

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C111S900000, C701S050000

Reexamination Certificate

active

06386128

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to methods and systems for planting agricultural fields. More particularly, embodiments of the present invention relate to methods and systems which facilitate management and control of seed planting operations so as to optimize the yield and quality of the harvested crop.
PRIOR STATE OF THE ART
There are a variety of factors that affect crop yield and quality. Such factors include disease, insects, seed quality, seed size, seed handling, and seed distribution. With respect to seed distribution in particular, various studies have shown a positive correlation between seed spacing and crop yield and quality. Suboptimal seed spacing may be manifested in a variety of ways. For example, known seed distribution methods and devices frequently produce “skips.” Generally, a skip occurs when the seed planter fails to deposit a seed in the required location, thus skipping a location where a seed should have been deposited. In the case of a “double,” the opposite problem occurs and two seeds are deposited in a single location. Finally, even in a case where no skips or double are present, the seeds deposited may nevertheless be planted in a less than optimal scheme.
All of the aforementioned scenarios are problematic. A skip, for example, reduces crop yield because it results in fewer seeds being planted than would otherwise be the case. On the other hand, while a double does not reduce the number of seeds planted, double seed placement will not result in the quality or yield that would be achieved by way of two properly spaced seeds. Finally, with respect to overall seed distribution, various studies have shown that it is not simply enough to have evenly distributed seeds, but that the particular distance between adjacent seeds may have a significant affect on overall crop quality and yield. Such studies have likewise shown that, in many cases, there is an optimum seed spacing that corresponds to each particular crop type.
While it is generally acknowledged that proper seed distribution and spacing are important factors in achieving high yield and high quality crops, various factors conspire to inhibit the realization of optimal spacing and distribution. For example, the condition of the soil in which the seeds are to be planted can have a significant affect on the spacing of the seeds. In particular, it is often the case that planting occurs some time after tilling of the field. As a result, the soil dries somewhat between tilling and planting. The relatively wet soil contributes to planter drive wheel slippage, and therefore, often produces an undesirable variation in seed spacing. However, it is difficult to correct for this shortcoming as the farmer has little control over the speed with which the tilled field dries. Further, the farmer cannot significantly alter the speed with which seeds are planted, so as to compensate for the rate of drying of the field, without compromising crop quality and/or yield.
Another problem relating to seed distribution and spacing concerns the variability in seed planter performance. More specifically, it is well known that even if two given seed planters are identical, each seed planter may nevertheless perform somewhat differently than the other. As a result, it generally cannot be assumed that a particular seed planter will perform in a given fashion. Rather, it is typically the case that each seed planter requires constant attention and adjustment in order to increase the likelihood of optimal seed placement and distribution.
While it is generally acknowledged that seed spacing is an important factor in achieving optimized crop yield and quality, obtaining information, after the fact, about seed spacing is somewhat problematic. Currently, the only way the farmer can be certain as to the actual spacing of the planted seeds is to dig up a selected portion of the field and verify the actual seed spacing. Such seed spacing verification is rarely performed because at a minimum it is time consuming. Further, even if the farmer was able to identify a problem with respect to the seed spacing, the current state of the art regarding planter performance, coupled with factors such as soil moisture, would likely substantially preclude implementation of an effective response to an identified seed spacing problem.
Responsive to the foregoing problems, various attempts have been made to devise methods and systems directed toward providing a relative improvement in the performance of seed planters with respect to seed spacing and distribution schemes. One known system uses sensors, in conjunction with various algebraic relations, to count the number of seeds actually placed in the field. However, while such a system may be effective in obtaining accurate seed counts, such systems typically rely on a so-called “averaging function” to determine an average seed spacing for each row that is planted, based upon seed planter speed and the number of seeds planted. It is an inherent feature of such averaging functions that they produce results based upon the assumption that seeds are placed at substantially regular intervals. As indicated in the previous discussion however, various factors conspire to inhibit optimum seed spacing, and an averaging function is, accordingly, generally ineffective in serving as a reliable indicator of actual seed spacing.
Thus, while seed planting methods and systems that employ averaging functions may be affective in obtaining accurate seed counts and determining average spacing of seeds, they are generally ineffective in providing the farmer with data as to the actual spacing of the seeds. As with other systems, a farmer using such a system would likely be compelled to dig up a portion of the field in order to determine where the seeds were actually placed. Accordingly, such systems are not particularly helpful in identifying seed spacing problems such as would require some type of remedial action and thus do little to improve crop quality or yield.
Further, because such systems typically provide the seed planter operator only with average seed spacing information, it is often the case that remedial action taken by the planter operator is not effective in any event with regard to actual seed spacing. Generally then, such systems provide only half the seed planting information that the farmer needs to optimize crop quality and crop yield. That is, such systems may be effective in providing data as to the number of seeds actually planted, but generally do not provide the farmer with data regarding the actual spacing of the seeds that are planted. Without such data, the farmer is unable to take effective remedial action to optimize crop quality and yield.
In view of the foregoing problems and shortcomings, and others, with existing seed planting systems, it would be an advancement in the art to provide a seed planting system that provides the farmer with accurate data both as to the number of seeds actually planted and the actual spacing, or geospatial location, of each seed planted. Further, the seed planting system should acquire both seed location data and seed deposition data substantially in real time so that the operator of the seed planter can take timely remedial action with regard to the number and spacing of the seeds. Also, the seed planting system should collect seed location data in a manner and form suitable for supporting subsequent develop of a seed distribution profile. Additionally, the seed planting system should be configured to facilitate real time management and control of the seed planter based upon seed location data and seed deposition data acquired by the seed planting system. Finally, the seed planting system should be rugged and durable, and suitable for use in a variety of weather and soil conditions.
BRIEF SUMMARY OF THE INVENTION
The present invention has been developed in response to the current state of the art, and in particular, in response to these and other problems and needs that have not been fully or completely solved. Briefly summarized, emb

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and systems for seed planting management and control does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and systems for seed planting management and control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and systems for seed planting management and control will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2848201

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.