Methods and systems for remotely monitoring sensor data in...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle diagnosis or maintenance indication

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S036000, C340S439000, C340S902000, C366S001000

Reexamination Certificate

active

06484079

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to delivery vehicles and particularly to delivery vehicles that deliver construction materials. In particular, the present invention relates to the remote monitoring and reporting of sensor data using intelligent resources associated with the delivery vehicle.
BACKGROUND OF THE INVENTION
Numerous problems are associated with the delivery of construction materials from a provider site to a client site. Although the construction materials are normally prepared carefully at the provider site, materials providers have no reliable means for accurately monitoring the materials during delivery or for determining the status of a particular delivery. This is particularly true in the context of ready-mix concrete delivery. It is common practice to mix the concrete at a provider site and to use mobile concrete delivery mixing trucks to deliver the concrete to a client site where the concrete may be required. Generally, the particulate concrete ingredients are loaded at a provider site that mixes the concrete ingredients according to a predefined recipe that yields concrete appropriate for the desired use.
An important aspect of the mixing process is to control the amount of water added to the concrete mixture. It is known that, if concrete is mixed with excess liquid component, the resulting concrete mix does not dry with the required structural strength. It is also known that the consistency of the concrete mixture may be measured by measuring the slump of the concrete mixture. Accordingly slump tests have been devised so that a sample of the concrete mix can be tested with a slump test prior to actual usage on site. It is also known to install slump sensors onto the concrete mixing trucks that measure the slump of the concrete mixture by monitoring the torque loading on the hydraulic drive which rotates the mixing barrel affixed to the truck. Thus, it is now possible to prepare a concrete mixture with ingredients specially chosen to provide a desired slump.
The slump is chosen based on the particular application to insure that the concrete provides the required strength level, durability, and level of quality for the application. Concrete providers have therefore gone to great lengths to prepare the concrete mixture to insure that these goals are met. A problem arises, however, when the mixing trucks leave the dispatch center and carry the mixture to the site because the concrete providers cannot monitor the slump consistency during transport and after delivery. Often, the mixture is altered after it leaves the dispatch center by adding water to reduce the slump. Although this makes it easier to spread and smooth the mixture, it compromises the quality and integrity of the concrete and leads to structural instability, cracks in the concrete's surface, discoloration and other undesired defects. This commonly results in disputes between the concrete provider and the client as to whom is responsible for the structural shortcomings. The concrete provider can only state that the concrete mixture was proper when it was shipped, but cannot account for the mixture during transport or unloading. Although existing methods enable the delivery driver to manually read and record the slump of the concrete mixture, it is often difficult to rely on manual recordings because the driver may forget or be persuaded to report inaccurate data.
Several attempts have been made to provide greater control over the concrete mixture after it leaves the provider site. For example, concrete providers have implemented programs to educate the concrete mixing truck drivers about the effects of adding water and other elements to the concrete mixture at the site. The problem persists, however, because the foremen at the delivery site often demand that water be added to ease the installation process. The delivery drivers are often persuaded to comply with these demands and, in many instances, not to report that the mixture was altered. Thus, there is an unsatisfied need for a way to monitor and control the composition of the concrete mixture, particularly the slump, during delivery and unloading.
Another problem apparent in the delivery of concrete products and other construction materials is the inability to monitor and report the status of various deliveries. Current systems track materials delivery by having the delivery driver communicate delivery status directly back to the dispatch site. This approach is problematic because the delivery drivers may not be precise or may misrepresent the actual status in order to hide their own mistakes. Human error also occurs resulting in inaccurate delivery records.
Recent developments in Global Positioning Systems have provided another means to track the location of delivery vehicles. These systems allow the dispatch center to locate the position of the delivery trucks. Based on the positioning data, the dispatch center may be able to determine whether the truck has arrived at the site location or the approximate time it will take the truck to arrive. Although the GPS's provide a better solution to tracking truck location, they provide no data whatsoever concerning the status of the actually delivery or of the status of the goods being delivered. For example, the vehicle may have arrived at the site and been unable to deliver the materials or goods. Thus, the GPS may indicate that the truck is en route back to the provider site, but it cannot inform the dispatch center if the goods were delivered. Obviously, these systems can be supplemented with radio communications or other manually implemented status updates, but this introduces human error and unreliability.
In large companies with numerous delivery vehicles, there is also a problem with monitoring and sifting through the large volume of data provided by existing systems such as those where delivery status is manually communicated to the dispatch center by the driver. As data for each vehicle is delivered to the dispatch center, some means must be provided to sift through the data to determine the status of the various deliveries and identify any problems in the delivery. Closely linked to this problem are the transaction costs resulting from the transmission of status updates to the dispatch center. Regardless of the method used, the costs of constantly updating the delivery status can be quite large. In systems that provide for periodic updates, there may also be limited bandwidth available for such transmissions. Thus, there is a need for a system that provides pertinent delivery status information but does not provide excessive information that overwhelms the dispatch center and requires unnecessary transmission costs.
SUMMARY OF THE INVENTION
The present invention addresses many of the problems previously encountered in the art by providing a system and method for remotely monitoring and reporting sensor data associated with a delivery vehicle. Advantageously, the data is collected and recorded at the delivery vehicle thus minimizing the bandwidth and transmission costs associated with transmitting data back to a dispatch center. The present invention enables the dispatch center to maintain a current record of the status of the delivery by monitoring the delivery data at the delivery vehicle to determine whether a transmission event has occurred. The transmission event provides a robust means enabling the dispatch center to define events that mark the delivery progress. When a transmission event occurs, the sensor data and certain event data associated with the transmission event are preferably transmitted to the dispatch center. Advantageously, this enables the dispatch center to monitor the progress and the status of the delivery without being overwhelmed by unnecessary information. Another advantage of the present invention is that it enables data concerning the delivery vehicle and the materials being transported to be automatically monitored and recorded such that an accurate record is maintained for all activity that occurs during transport and delive

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and systems for remotely monitoring sensor data in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and systems for remotely monitoring sensor data in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and systems for remotely monitoring sensor data in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2920949

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.