Methods and systems for reducing background signal in assays

Chemistry: electrical and wave energy – Processes and products – Electrophoresis or electro-osmosis processes and electrolyte...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S451000, C204S454000

Reexamination Certificate

active

07060171

ABSTRACT:
Methods and systems of monitoring reactions, e.g., assays, that filter out background signal from substrate, in detecting the product. The methods and systems controllably move detectable reaction product from a first location to a second location at which the product is detected while controllably moving potentially interfering substrate materials away from or not toward the second location. Controllable movement of the different species is accomplished through the controlled combination of bulk fluid flow and differential electrophoresis of substrate and product to move the product, but not the substrate past the detection region.

REFERENCES:
patent: 4390403 (1983-06-01), Batchelder
patent: 4908112 (1990-03-01), Pace
patent: 5126022 (1992-06-01), Soane et al.
patent: 5320730 (1994-06-01), Ewing et al.
patent: 5498392 (1996-03-01), Wilding et al.
patent: 5571410 (1996-11-01), Swedberg et al.
patent: 5585069 (1996-12-01), Zanzucchi et al.
patent: 5593838 (1997-01-01), Zanzucchi et al.
patent: 5603351 (1997-02-01), Cherukuri et al.
patent: 5635358 (1997-06-01), Wilding et al.
patent: 5637469 (1997-06-01), Wilding et al.
patent: 5699157 (1997-12-01), Parce
patent: 5716852 (1998-02-01), Yager et al.
patent: 5750015 (1998-05-01), Soane et al.
patent: 5800690 (1998-09-01), Chow et al.
patent: 5858187 (1999-01-01), Ramsey et al.
patent: 5858195 (1999-01-01), Ramsey
patent: 5869004 (1999-02-01), Parce et al.
patent: 5876675 (1999-03-01), Kennedy
patent: 5880071 (1999-03-01), Parce et al.
patent: 5882465 (1999-03-01), McReynolds
patent: 5885470 (1999-03-01), Parce et al.
patent: 5932100 (1999-08-01), Yager et al.
patent: 5942443 (1999-08-01), Parce et al.
patent: 5948227 (1999-09-01), Dubrow
patent: 5948231 (1999-09-01), Fuchs et al.
patent: 5955028 (1999-09-01), Chow
patent: 5958694 (1999-09-01), Nikiforov
patent: 5959291 (1999-09-01), Jensen
patent: 5965410 (1999-10-01), Chow et al.
patent: 5976336 (1999-11-01), Dubrow et al.
patent: 5989402 (1999-11-01), Chow et al.
patent: 6001229 (1999-12-01), Ramsey
patent: 6001231 (1999-12-01), Kopf-Sill
patent: 6012902 (2000-01-01), Parce
patent: 6042709 (2000-03-01), Parce et al.
patent: 6046056 (2000-04-01), Parce et al.
patent: 6062261 (2000-05-01), Jacobson et al.
patent: 6074725 (2000-06-01), Kennedy
patent: 6100541 (2000-08-01), Nagle et al.
patent: 6120666 (2000-09-01), Jacobson et al.
patent: 6184029 (2001-02-01), Wilding et al.
patent: 6221226 (2001-04-01), Kopf-Sill
patent: 6235471 (2001-05-01), Knapp et al.
patent: 6280589 (2001-08-01), Manz et al.
patent: 6306273 (2001-10-01), Wainright et al.
patent: 6627406 (2003-09-01), Singh et al.
patent: 2002/0008029 (2002-01-01), Williams et al.
patent: WO-9604547 (1996-02-01), None
patent: WO-9702357 (1997-01-01), None
patent: WO 98/32010 (1998-07-01), None
patent: WO-0163270 (2001-08-01), None
CAPLUS abstract of Sasamoto et al. (“Highly sensitive immunological assays for human chorionic gonadotropin and prostatic acid phosphatase using phenacyl phophate as a chemiluminescent label,” Analytica Chimica Acta (1995), 309(1-3), 221-5).
CAPLUS abstract of Kousaka et al. (“Evaluation of serum LH, FSH, E2, PRL, and hcg determination kit using automated enzyme immunoassay system AIA-1200XL,” Igaku to Yakugaku (1994), 32(2), 355-64).
CAPLUS abstract of Kitamura et al. (“A new highly sensitive chemiluminescent assay of alkaline phosphatase using lucigenin and its application to enzyme immunoassay,” Journal of Bioluminescence and Chemiluminescence (1995), 10(1), 1-7).
Dasgupta, P.K. et al., “Electroosmosis: A Reliable Fluid Propulsion System for Flow Injection Analysis,”Anal. Chem.(1994) 66:1792-1798.
Effenhauser, C.S. et al., “Glass Chips for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights,”Anal. Chem.(1993) 65: 2637-2642.
Effenhauser, C.S. et al., “High Speed Separation of Anitsense Oligonucleotides on a Micromachined Capillary Electrophoresis Device,”Anal. Chem.(1994) 66: 2949-2953.
Effenhauser, C.S. et al., “Integrated Capillary Electrophoresis on Flexible Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips,”Anal. Chem.(1997) 69: 3451-3457.
Fan, Z.H. et al., “Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evluation of Flow at Capillary Intersections,”Anal. Chem.(1994) 66: 177-184.
Fister, J.C. III et al., “Counting Single Chromophore Molecles for Ultrasensitive Analysis and Separations on Microchip Devices,”Anal. Chem.(1998) 70: 431-437.
Hadd, A.G. et al., “Microfluidic Assays of Acetylcholinesterase,”Anal. Chem.(1999) 71: 5206-5212.
Harrison, J. et al., “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip,”Anal. Chem.(1992) 64: 1926-1932.
Harrison, J. et al., “Towards Miniaturized Electrophoresis and Chemical Analysis Systems on Silicon: An Alternative to Chemical Sensors*,”Sensors and Actuators B(1993) 10: 107-116.
Harrison, J. et al., “Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip,”Science(1993) 261: 895-897.
Harrison, D.J. et al., “Integrated Electrophoresis Systems for Biochemical Analyses,”Solid-State Sensor and Actuator Workshop(1994) 21-24.
Jacobson, S.C. et al., “Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices,”Anal. Chem.(1994) 66:1107-1113.
Jacobson, S.C. et al., “High-Speed Separations on a Microchip,”Anal. Chem.(1994) 66: 1114-1118.
Jacobson, S.C. et al., “Open Channel Electrochromatography on a Microchip,”Anal. Chem.(1994) 66: 2369-2373.
Jacobson, S.C. et al., “Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip,”Anal. Chem.(1994) 66: 4127-4132.
Jacobson, S.C. et al., “Microchip Electrophoresis with Sample Stacking,”Electrophoresis(1995) 16: 481-486.
Jacobson, S.C. et al., “Fused Quartz Substrates for Microchip Electrophoresis,”Anal. Chem.(1995) 67: 2059-2063.
Jacobson, S.C. et al., “Integrated Microdevice for DNA Restriction Fragment Analysis,”Anal. Chem.(1996) 68: 720-723.
Jacobson, S.C. et al., “Electrokinetic Focusing in Microfabricated Channel Structures,”Anal. Chem.(1997) 69: 3212-3217.
Jacobson, S.C. et al., “Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing,”Anal. Chem.(1999) 71: 4455-4459.
Manz, A. et al., “Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing,”Sensors and Actuators(1990) B1: 244-248.
Manz, A. et al., “Micromachining of Monocrystalline Silicon and Glass for Chemical Analysis Systems,”Trends in Analytical Chemistry(1991) 10:144-149.
Manz, A. et al., “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems,”Journal of Chromatography(1992) 593:253-258.
Manz, A. et al., “Planar Chips Technology for Miniaturization of Separation Systems: A Developing Perspective in Chemical Monitoring.”
Manz, A. et al., “Electroosmotic Pumping and Electrophoretic Separations for Miniaturized Chemical Analysis Systems,” J. Micromach. Microeng. (1994) 4: 257-265.
Manz, A. et al., “Parallel Capillaries for High Throughput in Electrophoretic Separations and Electroosmotic Drug Discovery Systems,” International Conference on Solid-State Sensors and Actuators (1997) 915-918.
McCormick, R.M. et al., “Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates,”Anal. Chem.(1997) 69: 2626-2630.
Moore, A.W. et al., “Microchip Separations of Neutral Species via Micellar Electrokinetic Capillary Chromatography,”Anal. Chem.(1995) 67: 4184-4189.
Ramsey, J.M. et al., “Microfabricated Chemical Measurement Systems,”Nature

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and systems for reducing background signal in assays does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and systems for reducing background signal in assays, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and systems for reducing background signal in assays will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3655310

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.