Methods and systems for real-time structured light depth...

Surgery – Endoscope – Having imaging and illumination means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S109000, C600S111000, C600S166000, C348S045000

Reexamination Certificate

active

06503195

ABSTRACT:

TECHNICAL FIELD
The present invention relates to methods and systems for determining depth information relating to a scene so that a three-dimensional image of the scene can be displayed on a display device. More particularly, the present invention relates to methods and systems for real-time structured light depth extraction and an endoscope using real-time structured light depth extraction.
BACKGROUND ART
In computer imaging systems, it is often desirable to determine depth information relating to an object or scene so that a three-dimensional image of the object can be displayed on a display device. One method for determining depth information is stereo depth extraction. In stereo depth extraction, two or more cameras are utilized to view an object. Determining the distance of the object from the cameras requires that both cameras focus on the same feature. This method is useful in determining depth of uncomplicated objects where all corners and edges of an object are well pronounced in a scene. However, curved edges, shading, non-planar surfaces, and uneven lighting make stereo depth extraction difficult because these conditions may prevent identification of a common feature that both cameras can resolve.
Another conventional method for extracting depth information from a scene is laser scanned depth extraction. In laser scanned depth extraction, a laser line is projected across a surface and viewed off-axis using a camera. Provided that the locations of the laser and the camera are known, scanning the laser line across the surface of the object allows a computer to build a three-dimensional depth model of the object. One disadvantage associated with laser scanned depth extraction is that the time for scanning a laser across the entire surface of an object makes this method impractical for real-time depth extraction systems.
In order to increase the speed at which depth information can be extracted from a scene, structured light depth extraction methods have been developed. In structured light depth extraction, a projector projects known patterns of structured light, such as lines, circles, bitmaps, or boxes, onto an object. A camera is positioned off-axis from the projector to sample light reflected from the object. A computer connected to the camera and the projector calculates depth information for the object of interest based on the projected light patterns, the reflected light patterns sampled by the camera, the position and orientation of the camera, and the position and orientation of the projector.
In early structured light depth extraction systems, slide projectors were utilized to project structured light patterns onto an object of interest. In order to project a plurality of patterns onto the object, a human operator manually placed slides containing different patterns in the slide projector. The slide projector projected the structured light patterns onto the object. A camera positioned off-axis from the slide projector sampled the reflected light for each structured light pattern. The sampled images were input into a computer that calculated depth information for the object. While these early systems were capable of accurate depth calculations, they were too slow for real-time updating of a displayed image.
More recently, structured light depth extraction has been performed using video projectors capable of changing structured light patterns about twice per second, resulting in updating of a displayed three-dimensional image about once every eight seconds. These structured light depth extraction systems may be capable of determining depth information more rapidly than conventional structured light depth extraction systems or laser scanned depth extraction systems. However, these systems are still too slow for real-time applications.
One application in which it may be desirable to use structured light depth extraction is endoscopy, where it is desirable to display a real-time image of the interior of a patient's body. In endoscopic surgery, an endoscope including or connected to a camera is inserted in a first incision in a patient's body, while a surgeon operates through another incision in the patient's body. The surgeon views the image seen by the camera on a video screen in order to guide surgical instruments in performing the operation. The image displayed on the video screen must be updated in real time, such that movements of the patient and the surgeon are reflected in the image with minimal latency. Currently, video cameras used in endoscopic surgery produce an image that is updated 30 times per second. As stated above, conventional structured light depth extraction systems are capable of updating a displayed image only about once every eight seconds. Thus, conventional structured light depth extraction systems are too slow for endoscopic surgical applications.
Another problem associated with applying structured light depth extraction systems to endoscopic surgery is that objects inside a patient's body are often wet and thus produce bright specular reflections. These reflections may saturate the phototransistors of a camera sampling the reflections. Saturating the phototransistors of the camera may lead to inaccurate reproduction of the scene. As a result, conventional structured light depth extraction is unsuitable for endoscopic surgical applications.
Conventional endoscopes include or are connected to one or more cameras that allow the surgeon to view the interior of the patient's body without utilizing structured light depth extraction. A single-camera endoscope is incapable of communicating depth information to the surgeon, unless the camera is continuously moving. Such continuous motion may make some tasks more difficult, may require a robot arm to guide the camera, and may result in trauma to the patient. In an alternative method, in order to determine depth information using a single-camera endoscope, the surgeon may either probe objects with an instrument or move the endoscope to different locations in the patient's body. Such probing and movement inside the patient's body is undesirable as it may increase trauma to the patient. Stereo endoscopes are capable of showing depth information; however, such devices may not accurately provide depth information with regard to complex rounded objects, such as structures inside a patient's body. Stereo endoscopes are generally used to directly display stereo images to a surgeon. In addition, conventional stereo endoscopes are large in cross-sectional area, thus requiring larger incisions in the patient.
Another problem associated with conventional endoscopic surgical instruments is that the camera may not view an object from the same direction that the surgeon is facing. As a result, movements of a surgical instrument viewed on the display screen may not match movements of the surgeon's hands operating the instrument. Thus, the surgeon is required to have excellent hand-eye coordination and experience in operating a conventional endoscope.
In light of the problems associated with conventional endoscopes and the inability of conventional structured light depth extraction systems to provide depth information in real time, there exists a need for real-time structured light depth extraction systems and endoscopes including real-time structured light depth extraction systems.
DISCLOSURE OF THE INVENTION
An object of the invention is to provide a real-time structured light depth extraction system and an endoscope having a real-time structured light depth extraction system.
Another object of the present invention is to provide an endoscope with a shared optical path for multiple optical signals so that the cross-sectional area of the endoscope can be made smaller.
Another object of the present invention is to provide an augmented reality visualization system for endoscopic surgery having a real-time structured light depth extraction system.
According to a first aspect, the present invention includes a real-time structured light dept extraction system. The system i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and systems for real-time structured light depth... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and systems for real-time structured light depth..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and systems for real-time structured light depth... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3029913

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.