Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science
Reexamination Certificate
2003-02-03
2004-06-01
Hoff, Marc S. (Department: 2863)
Data processing: measuring, calibrating, or testing
Measurement system in a specific environment
Earth science
C705S004000
Reexamination Certificate
active
06745128
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods and systems for the management of agricultural plots of land. More specifically, information related to elevation, soil conductivity, satellite imagery, and grower yield history is extracted from the plots of land. The extracted information is used to generate a management zone profile and create a prescription for the plot of land.
BACKGROUND OF THE INVENTION
As the demand on the food supply increases and the total viable farmland decreases, methods and systems are needed that maximize crop yields. Maximum crop yields result in increased production of agricultural products and more value per acre of land. However, the effort in maximizing crop yields is difficult, time consuming, and costly because the characteristics of farmland vary from acre to acre. This variance is due to factors such as the conditions of the soil and topography. Further, a field may include significant acre-to-acre variations in nutrients, quality of crop produced, and ultimately crop yield.
For example, residual soil nutrients can vary considerable. Nitrate nitrogen can vary from about 15 lbs/acre to 150 lbs/acre. Quality of the crop can also show significant variability. For example, protein and test weight for wheat can range 2.5 percent in a single 40-acre field. The yield can vary as well. Typically, yields range from 50 percent less than the mean to 50 percent greater than the mean. Most applied nutrient amounts are determined by the expected yield of the crop. Therefore, it is important to determine yield potentials prior to application of fertilizers.
The soil type can also significantly affect crop yields. Agricultural lands are typically comprised of several different soil types, each of which may be categorized according to differences in soil texture, soil depth, and soil chemistry. Soil texture can be measure by examining the relative proportions of sand, silt, and clay contained within the soil.
Although any given plot of land or field may include many different soil types, it would be unusual if it did not include at least two substantially different soils having substantially different fertilization requirements. Some fields contain one dominant soil type that covers the majority of the field area with the remaining area made up of other different soil types. These other areas of different soil type are distributed around the field in various locations and have irregularly shaped boundaries, which often, but not necessarily, correspond to low or high spots. Often, a field contains a number of soil types. Ideally, each of the individual areas of different soil should be treated independently for the purpose of applying seed, fertilizer, or other items to the field.
Present methods determine nutrient requirements by taking soil samples from different areas of the field in a grid configuration. Characteristics such as soil composition and type can be assessed from the soil samples. Additionally, topography can be ascertained. Determining the soil characteristics from samples taken throughout a plot of land, particularly when the farm is thousands of acres, would require analysis on hundreds if not thousands of samples. Extracting and analyzing this multitude of soil samples is cost prohibitive and does not provide a viable method for maximizing agricultural output. Furthermore, the grid method may allow a varied number of soil types and elevations to be included within a single area due to the irregularity in shape of the different areas of the field. This is also problematic.
The current practice is to prescribe items, such as seed and fertilizer, to the entire plot of land or section of the land, if using the grid method, according to the needs of the most deficient soil, or according to the averaged requirements of the different soils. The result is that a substantial area of the field receives either more or less of the item being applied, resulting in significant waste of expensive of materials, such as fertilizer, and potentially lowering yields. In the field averaging method, only those sections which fall under average field characteristics will receive the proper field prescription leaving the remainder of the field without the correct seed, fertilizer, or chemical treatment. Both the deficient soil and field average methods fail to maximize field yields and output.
It would be desirable to develop system and methods that manage farmland to increase crop yields, maximize output per acre of land, and reduce costs associated with managing and assessing the crop yield potential for a field. The present invention addresses these needs.
SUMMARY OF THE INVENTION
Generally, the present invention relates to methods and systems for providing a prescription of at least one item to a plot of farmland. In accordance with the present invention, the above and other problems are solved by creating a management zone profile that is based upon information extracted from the plot of land.
In accordance with one aspect, the present invention relates to a method for A method for characterizing a plot of land, the method comprising the steps of: generating an elevation profile for the plot of land; generating a soil conductivity profile for the plot of land; generating a satellite image profile of the plot of land; and analyzing the elevation profile, the soil conductivity profile, and the satellite image profile to generate a management zone profile.
In accordance with other aspects, the present invention relates to a method for characterizing a plot of land, the method comprising the steps of: collecting elevational information on the plot of land; collecting soil conductivity information on the plot of land; collecting satellite imagery information on the plot of land; correlating the elevational information, the soil conductivity information, and the satellite imagery information to a latitude and longitude to produce an elevation profile, a soil conductivity profile, a satellite imagery profile, and a grower history profile; and providing the elevational profile, the soil conductivity profile, and the satellite imagery profile for analysis to generate a management zone profile.
In accordance with other aspects, the present invention relates to a method for characterizing a plot of land, the method comprising the steps of: providing elevational information on the plot of land; providing soil conductivity information on the plot of land; providing infrared satellite imagery information on the plot of land; correlating the elevational information, the soil conductivity information, and the satellite imagery information to a latitude and longitude to produce an elevation profile, a soil conductivity profile, a satellite imagery profile, and a grower history profile; and providing the elevational profile, the soil conductivity profile, and the satellite imagery profile for analysis to generate a management zone profile.
In accordance with other aspects, the present invention relates to a method for managing a plot of land, the method comprising the steps of: generating an elevation profile for the plot of land; generating a soil conductivity profile for the plot of land; generating an satellite image of the plot of land; analyzing the elevation profile, the soil conductivity profile, and the satellite image profile to generate a management zone profile, wherein the management zone profile is divided into two or more agronomy zones; obtaining at least one soil sample from each of two or more agronomy zones; analyzing the at least one soil sample obtained from each of the two or more agronomy zones; and applying a prescribed amount of at least one item to the plot of land based upon based upon the analysis of the at least one soil sample obtained from each of the two or more agronomy zones and the management zone profile.
In accordance with other aspects, the present invention relates to a method of analyzing information organized into a profile and for transforming the profile into a management zone profile, the method comprising: storing
Hoff Marc S.
Merchant & Gould P.C.
MZB Technologies, LLC
Taylor Victor J.
LandOfFree
Methods and systems for managing farmland does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and systems for managing farmland, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and systems for managing farmland will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3364935