Methods and systems for enabling a tunnel between two...

Electrical computers and digital processing systems: multicomput – Computer-to-computer session/connection establishing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S217000, C709S238000, C709S249000

Reexamination Certificate

active

06631416

ABSTRACT:

DESCRIPTION OF THE INVENTION
1. Field of the Invention
The present invention relates to systems and methods for controlling networks, and in particular, to systems and methods for implementing virtual private networks.
2. Background of the Invention
Wide area networks allow users to access company files and computer programs, regardless of where users are geographically located. Until recently, building wide area networks remained the province of only the largest corporations or companies with enough technical skill and financial resources. Organizations have used a range of approaches to building wide area networks to connect remote offices, partners, or employees. These “traditional” approaches to connectivity include, for example, point-to-point leased lines, packet switched networks, and dedicated virtual private networks (VPNs).
Point-to-point leased lines are physical networks requiring the engineering of separate links between sites that need to communicate with each other. Point-to-point leased lines can take from 30 to 90 days to install and are costly.
A packet switched network using frame relay is a traditional alternative to point-to-point leased lines that offers reduced costs and increased flexibility. Like the point-to-point solutions, the initial installation of a frame relay network takes a long time. For example, additional access circuits may usually take two to three weeks for installation and the service is fairly costly.
A more-recently introduced service offered by some network service providers is a dedicated virtual private network. This routed service eliminates the complexity and costs associated with the engineering of connections between dedicated locations, but requires the network service provider to manage security as the network is shared with other customers. A virtual private network is “virtual” because it uses a shared or a base network, such as the Internet as its backbone as opposed to a completely private network with dedicated lines. It is also “private” since the information that is exchanged between the users may be encrypted or encoded to provide privacy. Prior to the present invention, virtual private networks, dedicated point-to-point lines, and packet switched networks shared drawbacks of being cumbersome and costly.
Although traditional virtual private networks offer low access costs, they often entail high set-up, maintenance, and management costs. Based on a number of factors, a shared network such as the Internet has evolved as the preferred backbone for connecting and internetworking multiple locations, partners, and employees. Also, the Internet offers the advantages of being ubiquitous, (available almost everywhere—small towns, large cities, around the world), offering an enormous capacity, and increasing cost-effectiveness, with fast, new access methods, such as DSL and cable modems.
With the advent and ubiquity of the Internet, virtual private networks have emerged as a way to build a private communication network over a shared public or private infrastructure or a base network. Virtual private networks provide secure private connections over the Internet by enabling authentication of users and locations, delivering secure and private “tunnels” between users or locations, and encrypting user communications.
Today, most virtual private networks are Internet Protocol (IP) based and are established over the Internet. They fall into two categories, namely hardware-based and software-based virtual private networks. Hardware-based virtual private networks require proprietary hardware platforms and claim to provide high price/performance ratios and potentially increased security through specialized functions. Network manufacturers are building some virtual private network capabilities into routers and other networking equipment.
Software-based virtual private networks have emerged as another alternative to hardware-based virtual private networks. Vendors are already adding virtual private network functionality, such as tunneling and encryption to their firewall solutions.
Although use of a base network, such as the Internet as a backbone for wide area networks may be less expensive and more flexible than traditional solutions, the associated costs and complexity of using virtual private networks has been prohibitive. As a result, most companies have been reluctant to link remote locations over the Internet using virtual private networks.
Building wide area virtual private networks over the Internet has been difficult because most robust solutions have required esoteric networking and security technologies. Merely deciding what type of virtual private network and what levels of security or encryption are required can be confusing to many information technology (IT) personnel and non-IT personnel. Beyond the complex purchase decisions, the installation and ongoing maintenance of such systems can be time-consuming, especially if the number of remote locations changes frequently. In addition, many companies have found that rolling out traditional virtual private network products requires significant logistical planning to make sure that the right hardware and software is available at all the remote locations. Initial configuration of these remote sites is often time consuming enough, without factoring in the effort required to get a remote site back on line if a location fails (especially if no skilled IT resources are available at the remote site).
Many organizations have been reluctant to establish Internet-based wide area virtual private networks also because of the increasing number of Internet security threats, such as hackers and corporate espionage. Further, virtual private networks and Internet-based connectivity solutions continue to remain prohibitively expensive. Even prepackaged virtual private network solutions require expensive networking personnel to configure, install, and manage such networks. For example, enterprise level firewall and virtual private network solutions may take up to a week to configure. In addition, the installation often requires support at the remote locations, dictating either extensive travel requirements for home office personnel or the hiring and training of remote IT support staff.
Many software-based virtual private network solutions also require the purchase of specialized and costly hardware. Moreover, although virtual private networks can save considerable amounts of money over frame relay or leased line networks, associated IT support costs often erase the savings. For example, setting up a virtual private network may necessitate hiring full-time IT professional to set up and administer the network.
As explained above, the installation and maintenance of a secure virtual private network over the Internet have been too complex, requiring financial investment in hardware, software, personnel, and/or time. To provide encryption and authentication on a virtual private network, each user must perform a variety of tasks including, for example, using an encryption algorithm that is compatible with the virtual private network; using an authentication technique that is compatible with the virtual private network; coordinating various security protocols with other users (e.g., coordinating a public key exchange) of the virtual private network; coordinating the establishment of tunnels with other users of the virtual private network; selecting and manually configuring the encryption path through the communication path; and/or recovering the virtual private network after a failure. Accordingly, the burdens of installing and administering virtual private networks are significant.
SUMMARY OF A FEW ASPECTS THE INVENTION
To address the above and other limitations of the prior art, methods and systems are provided that easily and effectively leverage the power of a shared or a base network, such as the Internet for private connectivity without the complexity, cost, or time associated with setting up traditional virtual private networks. Rather than requiring specialized hardware, such methods and syste

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and systems for enabling a tunnel between two... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and systems for enabling a tunnel between two..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and systems for enabling a tunnel between two... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3175513

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.