Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert
Reexamination Certificate
1996-07-12
2002-02-19
Page, Thurman K. (Department: 1615)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Implant or insert
C424S424000, C424S436000, C424S448000, C424S451000, C424S464000, C514S654000
Reexamination Certificate
active
06348208
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains to methods and pharmaceutical compositions for using the selegiline metabolite R(−)desmethylselegiline (also referred to simply as “desmethylselegiline” or “R(−)DMS”) either alone or in combination with its enantiomer, entdesmethylselegiline (also referred to as “S(+)desmethylselegiline” or “S(+)DMS”). In particular, the present invention provides compositions and methods for using these agents in the treatment of selegiline-responsive diseases and conditions, particularly diseases or conditions involving neuronal degeneration or neuronal rescue).
BACKGROUND OF THE INVENTION
Two distinct monoamine oxidase enzymes are known in the art: monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B). The cDNAs encoding these enzymes show different promoter regions and distinct exon portions, indicating they are encoded independently at different gene positions. In addition, analysis of the two proteins has shown differences in their respective amino acid sequences.
The first compound found to selectively inhibit MAO-B was R-(−)-N-methyl-N-(prop-2-ynyl)-2-aminophenylpropane, also known as L-(−)-deprenyl, R-(−)-deprenyl, or selegiline. Selegiline has the following structural formula:
Selegiline is the active ingredient of a human drug product and is known in the art as a component of a therapeutic package. In particular, see Physicians Desk Reference (1995) pp. 2430-2432 (1995 PDR), describing Eldepryl® Tablets, manufactured by Somerset Pharmaceutical, Inc. and marketed by Sandoz, the active ingredient of which is selegiline. For example, the 1995 PDR describes a 5 mg. selegiline hydrochloride tablet and further describes the manner in which selegiline-containing therapeutic packages are supplied for commercial use or sale. In particular, the 1995 PDR discloses that 5.0 mg Eldepryl Tablets are sold in “NDC 39506-011-25 bottles of 60 tablets.”
In commercial use, selegiline-containing therapeutic packages are labeled and otherwise indicated for use in Parkinsonian patients receiving levodopa/carbidopa therapy. The 1995 PDR cited above provides an example of the complete approved labeling that is employed in known therapeutic packages. Accordingly, known in the prior art are therapeutic packages providing one or more unit doses of selegiline as an active ingredient thereof, supplied in a finished pharmaceutical container that contains said unit doses, and further contains or comprises labeling directing the use of said package in the treatment of a human disease or condition as described above.
The selectivity of selegiline in the inhibition of MAO-B is important to its safety profile following oral administration. Inhibition of MAO-A may cause toxic side effects by interfering with the metabolism of tyramine. Tyramine is normally metabolized in the gastrointestinal tract by MAO-A but when MAO-A is inhibited, tyramine absorption is increased following consumption of tyramine-containing foods such as cheese, beer, herring, etc. This results in the release of catecholamines which can precipitate a hypertensive crisis, producing the “cheese effect.” This effect is characterized by Goodman and Gilman as the most serious toxic effect associated with MAO-A inhibitors.
One of the metabolites of selegiline is its N-desmethyl analog. Structurally, the desmethylselegiline metabolite is the R(−) enantiomeric form of a secondary amine of the formula:
Heretofore, desmethylselegiline was not known to have pharmaceutically useful MAO-related effects, i.e., potent and selective inhibitory effects on MAO-B. In the course of determining the usefulness of desmethylselegiline for the purposes of the present invention, the MAO-related effects of desmethylselegiline were more completely characterized. This characterization has established that desmethylselegiline has exceedingly weak MAO-B inhibitory effects and no advantages in selectivity with respect to MAO-B compared to selegiline.
For example, the present characterization established that selegiline has an IC
50
value against MAO-B in human platelets of 5×10
−9
M whereas R(−)desmethylselegiline's IC
50
value is 4×10
−7
M, indicating the latter is approximately 80 times less potent as an MAO-B inhibitor than the former. Similar characteristics can be seen in the following data measuring inhibition of MAO-B and MAO-A in rat cortex mitochondrial-rich fractions:
TABLE 1
Inhibition of MAO by Selegiline and Desmethylselegiline
Percent Inhibition
selegiline
R(−)desmethylselegiline
Conc.
MAO-B
MAO-A
MAO-B
MAO-A
0.003
&mgr;M
16.70
—
3.40
—
0.010
&mgr;M
40.20
—
7.50
—
0.030
&mgr;M
64.70
—
4.60
—
0.100
&mgr;M
91.80
—
6.70
—
0.300
&mgr;M
94.55
9.75
26.15
0.0
1.000
&mgr;M
95.65
32.55
54.73
0.70
3.000
&mgr;M
98.10
65.50
86.27
4.10
10.000
&mgr;M
—
97.75
95.15
11.75
30.000
&mgr;M
—
—
97.05
—
100.000
&mgr;M
—
—
—
56.10
As is apparent from the above table, selegiline is approximately 128 times more potent as an inhibitor of MAO-B relative to MAO-A, whereas desmethylselegiline is about 97 times more potent as an inhibitor of MAO-B relative to MAO-A. Accordingly, desmethylselegiline appears to have an approximately equal selectivity for MAO-B compared to MAO-A as selegiline, albeit with a substantially reduced potency.
Analogous results are obtained in rat brain tissue. Selegiline exhibits an IC
50
for MAO-B of 0.11×10
−7
M whereas desmethylselegiline's IC
50
value is 7.3×10
−7
M, indicating desmethylselegiline is approximately 70 times less potent as an MAO-B inhibitor than selegiline. Both compounds exhibit low potency in inhibiting MAO-A in rat brain tissue, 0.18×10
−5
for selegiline, 7.0×10
−5
for desmethylselegiline. Thus, in vitro R(−)desmethylselegiline is approximately 39 times less potent than selegiline in inhibiting MAO-A.
Based on its pharmacological profile as set forth above, R(−)desmethylselegiline as an MAO-B inhibitor provides no advantages in either potency or selectivity compared to selegiline. To the contrary, the above in vitro data suggest that use of desmethylselegiline as an MAO-B inhibitor requires on the order of 70 times the amount of selegiline.
The potency of R(−)desmethylselegiline as an MAO-B inhibitor in vivo has been reported by Heinonen, E. H., et al. (“Desmethylselegiline, a metabolite of selegiline, is an irreversible inhibitor of MAO-B in human subjects,” referenced in Academic Dissertation “Selegiline in the Treatment of Parkinson's Disease,” from Research Reports from the Department of Neurology, University of Turku, Turku, Finland, No. 33 (1995), pp. 59-61). According to Heinonen, desmethylselegiline in vivo has only about one-fifth the MAO-B inhibitory effect as selegiline, i.e., a dose of 10 mg of desmethylselegiline would be required for the same MAO-B effect as 1.8 mg of selegiline. In rats, Barbe reported R(−)desmethylselegiline to be an irreversible inhibitor of MAO-B, with a potency about 60 fold lower than selegiline in vitro and about 3 fold lower ex vivo (Barbe, H. O.,
J. Neural Trans.
(
Suppl.
):32:131 (1990)).
The various diseases and conditions for which selegiline is discloased as being useful include: depression (U.S. Pat. No. 4,861,800); Alzheimer's disease and Parkinson's disease, particularly through the use of transdermal dosage forms, including ointments, creams and patches; macular degeneration (U.S. Pat. No. 5,242,950); age-dependent degeneracies, including renal function and cognitive function as evidenced by spatial learning ability (U.S. Pat. No. 5,151,449); pituitary-dependent Cushing's disease in humans and nonhumans (U.S. Pat. No. 5,192,808); immune system dysfunction in both humans (U.S. Pat. No. 5,387,615) and animals (U.S. Pat. No. 5,276,057); age-dependent weight loss in mammals (U.S. Pat. No. 5,225,446); and schizophrenia (U.S. Pat. No. 5,151,419). PCT Published Application WO 92/17169. discloses the use of
Blume Cheryl D.
DiSanto Anthony R.
Channavajjala Lakshmi
Page Thurman K.
Somerset Pharmaceuticals, Inc.
Vinson & Elkins LLP
LandOfFree
Methods and pharmaceutical compositions employing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and pharmaceutical compositions employing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and pharmaceutical compositions employing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2985182