Chemistry: molecular biology and microbiology – Virus or bacteriophage – except for viral vector or...
Reexamination Certificate
1999-06-11
2003-06-03
Lankford, Jr., Leon B. (Department: 1651)
Chemistry: molecular biology and microbiology
Virus or bacteriophage, except for viral vector or...
C435S237000, C435S239000, C424S093600
Reexamination Certificate
active
06573079
ABSTRACT:
1. INTRODUCTION
The present invention relates, in general, to attenuated negative-strand RNA viruses having an impaired ability to antagonize the cellular interferon (IFN) response, and the use of such attenuated viruses in vaccine and pharmaceutical formulations. The invention also relates to the development and use of IFN-deficient systems for the selection, identification and propagation of such attenuated viruses.
In a particular embodiment, the invention relates to attenuated influenza viruses having modifications to the NS1 gene that diminish or eliminate the ability of the NS1 gene product to antagonize the cellular IFN response. The mutant viruses replicate in vivo, but demonstrate reduced pathogenicity, and therefore are well suited for use in live virus vaccines, and pharmaceutical formulations.
2. BACKGROUND OF THE INVENTION
2.1 The Influenza Virus
Virus families containing enveloped single-stranded RNA of the negative-sense genome are classified into groups having non-segmented genomes (Paramyxoviridae, Rhabdoviridae, Filoviridae and Borna Disease Virus) or those having segmented genomes (Orthomyxoviridae, Bunyaviridae and Arenaviridae). The Orthomyxoviridae family, described in detail below, and used in the examples herein, includes the viruses of influenza, types A, B and C viruses, as well as Thogoto and Dhori viruses and infectious salmon anemia virus.
The influenza virions consist of an internal ribonucleoprotein core (a helical nucleocapsid) containing the single-stranded RNA genome, and an outer lipoprotein envelope lined inside by a matrix protein (M1). The segmented genome of influenza A virus consists of eight molecules (seven for influenza C) of linear, negative polarity, single-stranded RNAs which encode ten polypeptides, including: the RNA-dependent RNA polymerase proteins (PB2, PB1 and PA) and nucleoprotein (NP) which form the nucleocapsid; the matrix membrane proteins (M1, M2); two surface glycoproteins which project from the lipid containing envelope: hemagglutinin (HA) and neuraminidase (NA); the nonstructural protein (NS1) and nuclear export protein (NEP). Transcription and replication of the genome takes place in the nucleus and assembly occurs via budding on the plasma membrane. The viruses can reassort genes during mixed infections.
Influenza virus adsorbs via HA to sialyloligosaccharides in cell membrane glycoproteins and glycolipids. Following endocytosis of the virion, a conformational change in the HA molecule occurs within the cellular endosome which facilitates membrane fusion, thus triggering uncoating. The nucleocapsid migrates to the nucleus where viral mRNA is transcribed. Viral mRNA is transcribed by a unique mechanism in which viral endonuclease cleaves the capped 5′-terminus from cellular heterologous mRNAs which then serve as primers for transcription of viral RNA templates by the viral transcriptase. Transcripts terminate at sites 15 to 22 bases from the ends of their templates, where oligo(U) sequences act as signals for the addition of poly(A) tracts. Of the eight viral RNA molecules so produced, six are monocistronic messages that are translated directly into the proteins representing HA, NA, NP and the viral polymerase proteins, PB2, PB1 and PA. The other two transcripts undergo splicing, each yielding two mRNAs which are translated in different reading frames to produce M1, M2, NS1 and NEP. In other words, the eight viral RNA segments code for ten proteins: nine structural and one nonstructural. A summary of the genes of the influenza virus and their protein products is shown in Table I below.
TABLE I
INFLUENZA VIRUS GENOME RNA SEGMENTS AND CODING
ASSIGNMENTS
a
Length
b
Encoded
Length
d
Molecules
Segment
(Nucleotides)
Polypeptide
c
(Amino Acids)
Per Virion
Comments
1
2341
PB2
759
30-60
RNA transcriptase component; host
cell RNA cap binding
2
2341
PB1
757
30-60
RNA transcriptase component;
initiation of transcription
3
2233
PA
716
30-60
RNA transcriptase component
4
1778
HA
566
500
Hemagglutinin; trimer; envelope
glycoprotein; mediates attachment to
cells
5
1565
NP
498
1000
Nucleoprotein; associated with
RNA; structural component of RNA
transcriptase
6
1413
NA
454
100
Neuraminidase; tetramer; envelope
glycoprotein
7
1027
M
1
252
3000
Matrix protein; lines inside of
envelope
M
2
96
?
Structural protein in plasma
membrane; spliced mRNA
8
890
NS
1
230
Nonstructural protein;function
unknown
NEP
121
?
Nuclear export protein; spliced
mRNA
a
Adapted from R.A. Lamb and P. W. Choppin (1983), Annual Review of Biochemistry, Volume 52, 467-506.
b
For A/PR/8/34 strain
c
Determined by biochemical and genetic approaches
d
Determined by nucleotide sequence analysis and protein sequencing
The influenza A virus genome contains eight segments of single-stranded RNA of negative polarity, coding for one nonstructural and nine structural proteins. The nonstructural protein NS1 is abundant in influenza virus infected cells, but has not been detected in virions. NS1 is a phosphoprotein found in the nucleus early during infection and also in the cytoplasm at later times of the viral cycle (King et al., 1975, Virology 64: 378). Studies with temperature-sensitive (ts) influenza mutants carrying lesions in the NS gene suggested that the NS1 protein is a transcriptional and post-transcriptional regulator of mechanisms by which the virus is able to inhibit host cell gene expression and to stimulate viral protein synthesis. Like many other proteins that regulate post-transcriptional processes, the NS1 protein interacts with specific RNA sequences and structures. The NS1 protein has been reported to bind to different RNA species including: vRNA, poly-A, U6 snRNA, 5′ untranslated region as of viral mRNAs and ds RNA (Qiu et al., 1995, RNA 1: 304; Qiu et al., 1994, J. Virol. 68: 2425; Hatada Fukuda 1992, J Gen Virol. 73:3325-9. Expression of the NS1 protein from cDNA in transfected cells has been associated with several effects: inhibition of nucleo-cytoplasmic transport of mRNA, inhibition of pre-mRNA splicing, inhibition of host mRNA polyadenylation and stimulation of translation of viral mRNA (Fortes, et al., 1994, EMBO J. 13: 704; Enami, et al, 1994, J. Virol. 68: 1432; de la Luna, et al., 1995, J. Virol. 69:2427; Lu, et al., 1994, Genes Dev. 8:1817; Park, et al., 1995, J. Biol Chem. 270, 28433; Nemeroff et al., 1998, Mol. Cell. 1:991; Chen, et al., 1994 EMBO J. 18:2273-83).
2.2 Attenuated Viruses
Inactivated virus vaccines are prepared by “killing” the viral pathogen, e.g., by heat or formalin treatment, so that it is not capable of replication. Inactivated vaccines have limited utility because they do not provide long lasting immunity and, therefore, afford limited protection. An alternative approach for producing virus vaccines involves the use of attenuated live virus vaccines. Attenuated viruses are capable of replication but are not pathogenic, and, therefore, provide for longer lasting immunity and afford greater protection. However, the conventional methods for producing attenuated viruses involve the chance isolation of host range mutants, many of which are temperature sensitive; e.g., the virus is passaged through unnatural hosts, and progeny viruses which are immunogenic, yet not pathogenic, are selected.
A conventional substrate for isolating and growing influenza viruses for vaccine purposes are embryonated chicken eggs. Influenza viruses are typically grown during 2-4 days at 37° C. in 10-11 day old eggs. Although most of the human primary isolates of influenza A and B viruses grow better in the amniotic sac of the embryos, after 2 to 3 passages the viruses become adapted to grow in the cells of the allantoic cavity, which is accessible from the outside of the egg (Murphy, B. R., and R. G. Webster, 1996. Orthomyxoviruses p. 1397-1445. In Fields Virology. Lippincott-Raven P. A.)
Recombinant DNA technology and genetic engineering techniques, in theory, would afford a superior approach to producing an attenuated virus since specific mutations could be deliberately engineered into the viral genome. However, the geneti
García-Sastre Adolfo
O'Neil Robert
Palese Peter
Lankford , Jr. Leon B.
Mount Sinai School of Medicine of New York University
Pennie & Edmonds LLP
LandOfFree
Methods and interferon deficient substrates for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and interferon deficient substrates for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and interferon deficient substrates for the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3126947