Methods and integrated devices and systems for performing...

Chemistry: analytical and immunological testing – Including sample preparation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S004000, C435S006120, C435S091200, C204S455000

Reexamination Certificate

active

06337212

ABSTRACT:

BACKGROUND OF THE INVENTION
The biological and chemical sciences, much like the electronics industry, have sought to gain advantages of cost, speed and convenience through miniaturization. The field of microfluidics has gained substantial attention as a potential solution to the problems of miniaturization in these areas, where fluid handling capabilities are often the main barrier to substantial miniaturization.
For example, U.S. Pat. Nos. 5,304,487, 5,498,392, 5,635,358, 5,637,469 and 5,726,026, all describe devices that include mesoscale flow systems for carrying out a large number of different types of chemical, and biochemical reactions and analyses.
Published international patent application No. WO 96/04547 to Ramsey describes microfluidic devices that incorporate electrokinetic means for moving fluids or other materials through interconnected microscale channel networks. Such systems utilize electric fields applied along the length of the various channels, typically via electrodes placed at the termini of the channels, to controllably move materials through the channels by one or both of electroosmosis and electrophoresis. By modulating the electric fields in intersecting channels, one can effectively control the flow of material at intersections. This creates a combination pumping/valving system that requires no moving parts to function. The solid state nature of this material transport system allows for simplicity of fabricating microfluidic devices, as well as simplified and more accurate control of fluid flow.
Published international patent application No. 98/00231 describes the use of microfluidic systems in performing high throughput screening of large libraries of test compounds, e.g., pharmaceutical candidates, diagnostic samples, and the like. By performing these analyses microfluidically, one gains substantial advantages of throughput, reagent consumption, and automatability.
Another advantage of microfluidic systems is to provide the ability to integrate large numbers of different operations in a single “lab-on-chip” device, for performing both upstream and downstream processing of reactants for analysis and/or synthesis. For example, International Patent Application No. PCT/US98/17910, filed Aug. 27, 1998, describes devices and systems that elegantly control and monitor temperature within microfluidic systems by applying electric currents to fluids to generate heat therein, as well as measure solution conductivity as a measure of fluid temperature.
Despite the substantial advantages made in the field of microfluidics, improvements are always desirable which allow more simplistic integration of analytical and synthetic operations. The present invention meets these and a variety of other needs.
SUMMARY OF THE INVENTION
In a first aspect, the present invention provides a reactor system. The reactor system comprises a reactor element with a plurality of reservoirs disposed in a surface of a substrate, a heating element, and at least a first heat exchanger disposed within at least one of the plurality of reservoirs. The heat exchanger is in thermal communication with the heating element.
Another aspect of the present invention is a method of performing temperature dependent reactions. The method comprises providing a reactor system which is composed of a plurality of reservoirs disposed in a body structure. The reservoirs are fluidly connected to a microscale channel network disposed in an interior portion of the body structure. A temperature control element, and a heat exchanger thermally coupled with the temperature control element are also included. The heat exchanger is inserted into the reservoir. A first reactant is placed into at least one of the reservoirs. The temperature within the reservoirs is controlled by modulating a temperature. The at least one reactant is transported from the at least first reservoir into the microscale channel network.


REFERENCES:
patent: 4116777 (1978-09-01), Takatsy et al.
patent: 4390403 (1983-06-01), Batchelder
patent: 4908112 (1990-03-01), Pace
patent: 5126022 (1992-06-01), Soane et al.
patent: 5252294 (1993-10-01), Kroy et al.
patent: 5364790 (1994-11-01), Atwood et al.
patent: 5475610 (1995-12-01), Atwood et al.
patent: 5498392 (1996-03-01), Wilding et al.
patent: 5571410 (1996-11-01), Swedberg et al.
patent: 5585069 (1996-12-01), Zanzucchi et al.
patent: 5593838 (1997-01-01), Zanzucchi et al.
patent: 5603351 (1997-02-01), Cherukuri et al.
patent: 5635358 (1997-06-01), Wilding et al.
patent: 5637469 (1997-06-01), Wilding et al.
patent: 5699157 (1997-12-01), Parce
patent: 5750015 (1998-05-01), Soane et al.
patent: 5779868 (1998-07-01), Parce et al.
patent: 5800690 (1998-09-01), Chow et al.
patent: 5842787 (1998-12-01), Kopf-Sill et al.
patent: 5852495 (1998-12-01), Parce
patent: 5869004 (1999-02-01), Parce et al.
patent: 5876675 (1999-03-01), Kennedy
patent: 5880071 (1999-03-01), Parce et al.
patent: 5882465 (1999-03-01), McReynolds
patent: 5885470 (1999-03-01), Parce et al.
patent: 5919622 (1999-07-01), Macho et al.
patent: 5985555 (1999-11-01), Bertling
patent: 5989402 (1999-11-01), Chow et al.
patent: 0 542 422 (1993-05-01), None
patent: 9604547 (1996-02-01), None
patent: 9702357 (1997-01-01), None
patent: 9805424 (1998-02-01), None
Dasgupta, P.K. et al., “Electroosmosis: A Reliable Fluid Propulsion System for Flow Injection Analysis,”Anal. Chem.66:1792-1798 (1994).
Jacobson, S. C. et al., “Fused Quartz Substrates for Microchip Electrophoresis,”Anal. Chem.67:2059-2063 (1995).
Manz, A. et al., “Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems,”J. Micromech. Microeng.4:257-265 (1994).
Ramsey, J.M. et al., “Microfabricated chemical measurement systems,”Nature Med.1:1093-1096 (1995).
Seiler, K. et al., “Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantitation, and Separation Efficiency,”Anal. Chem.65:1481-1488 (1993).
Seiler, K. et al., “Electroosmotic Pumping and Valveless Control of Fluid Flow Within a Manifold of Capillaries on a Glass Chip,”Anal. Chem.66:3485-3491 (1994).
Woolley, A.T. et al., “Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device,”Anal. Chem.1996 68:4081-4086.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and integrated devices and systems for performing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and integrated devices and systems for performing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and integrated devices and systems for performing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2835673

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.