Surgery – Specula – Retractor
Reexamination Certificate
1999-12-01
2003-09-30
O'Connor, Cary E. (Department: 3732)
Surgery
Specula
Retractor
C600S231000
Reexamination Certificate
active
06626830
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to surgical instruments, and more particularly to methods and devices for improved tissue stabilization using multiple link support members. The tissue stabilizers described herein are particularly useful for stabilizing the beating heart during coronary artery bypass graft surgery.
BACKGROUND OF THE INVENTION
A number surgical procedures require the surgeon to perform delicate operations on tissues within the body that are moving or otherwise unstable. For example, surgeons are routinely performing successful coronary artery bypass graft surgery (CABG) on the beating heart. In a typical coronary artery bypass graft procedure, a blocked or restricted section of coronary artery, which normally supplies blood to a portion of the heart, is bypassed using a source vessel or a graft vessel to re-establish blood flow to the artery downstream of the blockage. This procedure requires the surgeon to create a fluid connection, or anastomosis, between the source or graft vessel and an arteriotomy or incision in the coronary artery. Anastomosing two vessels in this manner is a particularly delicate procedure requiring the precise placement of tiny sutures in the tissue surrounding the arteriotomy in the coronary artery and in the source or graft vessel so that the two may be sutured together.
To ensure that the sutures may be placed with the required accuracy and precision to yield an anastomosis having the desired long term patency, a number of devices have been developed to stabilize a portion of the heart in the vicinity of the target coronary artery. The vast majority of devices suitable for successfully stabilizing the beating heart use either compression or vacuum, or both, to engage and immobilize a portion of cardiac tissue, preferably along opposite sides of the target artery. Devices configured to use a compressive force to stabilize a surgical site on the beating heart can be found, for example, in U.S. Pat. No. 5,894,843 to Benetti et al. Examples of devices configured to use negative pressure or vacuum to stabilize or to assist in stabilizing cardiac tissue are described, for example, in U.S. Pat. No. 5,727,569 to Benetti et al. and U.S. Pat. No. 5,836,311 to Borst et al.
The devices used to stabilize the beating heart must be sufficiently stiff or rigid to resist or placate the movement of the still beating heart muscle as it contracts and relaxes in regular fashion to pump blood throughout the body. Such stabilization devices typically employ a tissue engaging or contacting member and some type of support member to connect the tissue contacting member to a stable support, such as a properly constructed rib or sternal retractor. The support member is most often either a continuous substantially rigid straight or curved shaft or a multiple link member that is sufficiently flexible for positioning and which can be made substantially rigid for stabilization.
Multiple link members typically involve a series of in-line ball and socket links which may be forced together axially by way of a wire or cable extending generally through the center of each link. As the links are forced together, the frictional forces between the successive links increase in proportion to the axial forces supplied by the cable until the frictional forces within the successive ball and socket links along the support member become so great as to resist relative movement therebetween, thus rendering the support member substantially rigid. Examples of articulating members having a plurality of links can be found in European Patent Application EP 0 803 228 A1 published on Oct. 29, 1997 and U.S. Pat. No. 5,899,425.
While the simple operation of multiple link devices have found some acceptance as suitable support members for use in connection with tissue stabilizers, it has proved very difficult to produce the required rigidity and maneuverability required in certain demanding surgical applications, such as stabilizing the beating heart during a CABG procedure. Regarding the rigidity of multiple link devices, for example, a great deal of axial force must be generated to ensure each of the links become sufficiently locked to resist any motion at the surgical site. To support these high loads, the links typically have a much greater diameter than their continuous shaft alternatives thus occupying a greater amount of space in the surgical field.
In addition, the ability to maneuver and position the distal end of a multiple link support member as desired within the surgical field is disadvantaged by the limited range of motion available between successive links along the support member. Attempting to position device through tight turns often proves excessively difficult. For example, a multi-link device may allow each link to rotate only about 15 degrees relative to an adjacent link. With such a configuration, articulating the support member through a 90 degree turn may involve six or more links, thus occupying an excessive amount of space in or near the operative field and resulting in a relatively large radius curve.
Because the rigidity is somewhat inefficient, requiring an increased device size and high forces, and because the maneuverability is limited by the relatively small range of motion between adjacent links, it can be quite difficult to reach and stabilize vessels of the beating heart which are remote from the access opening established by the retractor. Multiple link support members may be unable to develop the rigidity required for optimum stabilization of the peripheral arteries of the beating heart and may be difficult to position at the remote locations which require tight turns or extreme angles of the support member or the contacting member relative to the support member.
Further, when the proximal end of the support member is attached to the retractor in a generally horizontal orientation, it is difficult for a multiple link support member to maneuver the initial roughly 90 degree or less turn required to position the distal end vertically down into the target surgical site. If the multiple link support member is unable to form a sufficiently tight turn or angle relative to its attachment to the retractor, it will tend to occupy an excessive amount of space at the access opening thus blocking visual and instrument access to the target surgical site to be stabilized.
In view of the foregoing, it would be desirable to have a tissue stabilizing device having a tissue contacting member and support member for stabilizing the beating heart which maintains the simplicity of use inherent to multiple links systems but also provides improved maneuverability and rigidity for optimum stabilization. It would also be desirable to have a multiple link support member having a proximal joint or mount which facilitates a sharp turn or angle, such as may be required when the support member is connected proximally to a retractor or other such device.
SUMMARY OF THE INVENTION
The present invention will be described primarily for use during CABG surgery, but the invention is not limited thereto, and is contemplated to be useful for other surgical procedures as well.
The devices and methods of the present invention involve tissue stabilizers which are constructed to provide superior maneuverability and improved tissue stabilization at a target site, for example on the beating heart. The present invention may involve stabilization devices that use at least one multiple link support member to operably connect a stabilizer foot to a stable support, such as a retractor. To minimize motion at the stabilizer foot and improve the overall stabilization of a target site, the present invention may involve a stabilizer foot having two or more multiple link support members. The stabilizer foot is typically positioned as desired at the surgical site with at least one support member connecting the stabilizer foot to a stable support. Subsequently, one or more additional support members may be provided and connected to the stabilizer foot, typically at different location
Califiore Antonio
Green, II Harry Leonard
Paul David J.
Reis Eugene Edward
Cardiothoracic Systems, Inc.
Law Office of Alan W. Cannon
O'Connor Cary E.
LandOfFree
Methods and devices for improved tissue stabilization does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and devices for improved tissue stabilization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and devices for improved tissue stabilization will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3027290