Methods and compositions for wound healing

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving viable micro-organism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S023000, C435S024000, C435S004000, C530S300000, C530S330000, C530S350000

Reexamination Certificate

active

06331409

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods and compositions for wound healing, and in particular, methods and compositions to promote and enhance wound healing.
BACKGROUND
The primary goal in the treatment of wounds is to achieve wound closure. Open cutaneous wounds represent one major category of wounds and include burn wounds, neuropathic ulcers, pressure sores, venous stasis ulcers, and diabetic ulcers. Open cutaneous wounds routinely heal by a process which comprises six major components: i) inflammation, ii) fibroblast proliferation, iii) blood vessel proliferation, iv) connective tissue synthesis v) epithelialization, and vi) wound contraction. Wound healing is impaired when these components, either individually or as a whole, do not function properly. Numerous factors can affect wound healing, including malnutrition, infection, pharmacological agents (e.g., actinomycin and steroids), diabetes, and advanced age [see Hunt and Goodson in
Current Surgical Diagnosis & Treatment
(Way; Appleton & Lange), pp. 86-98 (1988)].
With respect to diabetes, it is known that delayed wound healing causes substantial morbidity in patients with diabetes. Diabetes mellitus is a chronic disorder of glucose metabolism and homeostasis that damages many organs. It is the eighth leading cause of death in the United States. M. Harris et al., “Prevalence of Diabetes and Impaired Glucose Tolerance and Glucose Levels in the US Population aged 20-40 Years,”
Diabetes
36:523 (1987). In persons with diabetes, vascular disease, neuropathy, infections, and recurrent trauma predispose the extremities, especially the foot to pathologic changes. These pathological changes can ultimately lead to chronic ulceration, which may necessitate amputation.
The most commonly used conventional modality to assist in wound healing involves the use of wound dressings. In the 1960s, a major breakthrough in wound care occurred when it was discovered that wound healing with a moist occlusive dressings was, generally speaking, more effective than the use of dry, non-occlusive dressings [Winter, Nature 193:293-94 (1962)]. Today, numerous types of dressings are routinely used, including films (e.g., polyurethane films), hydrocolloids (hydrophilic colloidal particles bound to polyurethane foam), hydrogels (cross-linked polymers containing about at least 60% water), foams (hydrophilic or hydrophobic), calcium alginates (nonwoven composites of fibers from calcium alginate), and cellophane (cellulose with a plasticizer) [Kannon and Garrett, Dermatol. Surg. 21:583-590 (1995); Davies,
Burns
10:94 (1983)]. Unfortunately, certain types of wounds (e.g., diabetic ulcers, pressure sores) and the wounds of certain subjects (e.g., recipients of exogenous corticosteroids) do not heal in a timely manner (or at all) with the use of such dressings.
Several pharmaceutical modalities have also been utilized in an attempt to improve wound healing. For example, treatment regimens involving zinc sulfate have been utilized by some practitioners. However, the efficacy of these regimens has been primarily attributed to their reversal of the effects of sub-normal serum zinc levels (e.g., decreased host resistance and altered intracellular bactericidal activity) [Riley,
Am. Fam. Physician
24:107 (1981)]. While other vitamin and mineral deficiencies have also been associated with decreased wound healing (e.g., deficiencies of vitamins A, C and D; and calcium, magnesium, copper, and iron), there is no strong evidence that increasing the serum levels of these substances above their normal levels actually enhances wound healing. Thus, except in very limited circumstances, the promotion of wound healing with these agents has met with little success.
What is needed is a safe, effective, and interactive means for enhancing the healing of wounds. The means should be able to be used without regard to the type of wound or the nature of the patient population to which the subject belongs.
SUMMARY OF THE INVENTION
The present invention is directed at systems and methods for enhancing the healing of wounds, especially chronic wounds (e.g., diabetic wounds, pressure sores). The compositions of the present invention are based on the discovery that peptides containing the amino acid sequence PHSRN promote wound healing. The present invention contemplates the use of such peptides, peptide derivatives, protease-resistant peptides, and non-peptide mimetics in the treatment of wounds.
It is not intended that the present invention be limited to the mode by which the compositions of the present invention are introduced to the patient. In one embodiment, the present invention contemplates systemic administration of the compound (e.g. intravenous). In another embodiment, the present invention contemplates topical administration, including but not limited to topical administration using solid supports (such as dressings and other matrices) and medicinal formulations (such as mixtures, suspensions and ointments). In one embodiment, the solid support comprises a biocompatible membrane. In another embodiment, the solid support comprises a wound dressing. In still another embodiment, the solid support comprises a band-aid.
The present invention contemplates a method for treating a wound, comprising a) providing: i) an invasion-inducing agent, and ii) a subject having at least one wound; and b) administering said invasion-inducing agent to said subject under conditions such that the healing of said wound is promoted.
The present invention also contemplates a method for treating a wound, comprising a) providing: i) an invasion-inducing agent on a solid support, and ii) a subject having at least one wound; and b) placing the solid support into the wound of the subject under conditions such that the healing of the wound is promoted.
The present invention also contemplates a method of screening candidate invasion-inducing agents comprising: a) providing: i) inducible cells, ii) a fibronectin-depleted substrate, and iii) one or more candidate invasion-inducing agents, b) contacting said cells in vitro with said fibronectin-free substrate and said one or more candidate invasion-inducing agents; and c) measuring the extent of cell invasion of said substrate. It is not intended that the present invention be limited to the type of inducible cells. In one embodiment, said inducible cells are epithelial cells. In another embodiment, said inducible cells are selected from the group consisting of fibroblasts, keratinocytes and muscle cells.
It is also not intended that the present invention be limited to a particular invasion-inducing agent. In one embodiment, said invasion-inducing agent comprises a fibronectin-derived peptide. In a preferred embodiment, said peptide comprises the amino acid sequence PHSRN. In yet another embodiment, said peptide lacks the RGD motif. In yet another embodiment, said peptide lacks the motif which binds the &agr;5&bgr;1 receptor.
It is not intended that the present invention be limited by the length of the peptide. In one embodiment, said peptide is between five and five hundred amino acids in length. In a preferred embodiment, said peptide comprises the amino acids PHSRN and additional amino acids added to the amino terminus. In another embodiment, said peptide comprises the amino acids PHSRN and additional amino acids added to the carboxy terminus. In yet another embodiment, said peptides comprises the amino acids PHSRN and additional amino acids added to both the amino and carboxy termini.
It is not intended that the present invention be limited to specific invasion-inducing agents. In one embodiment, the present invention contemplates invasion-inducing agents that comprise peptides that are protease resistant. In one embodiment, such protease-resistant peptides are peptides comprising protecting groups. In a preferred embodiment, endoprotease-resistance is achieved using peptides which comprise at least one D-amino acid.
DEFINITIONS
To facilitate understanding of the invention set forth in the d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and compositions for wound healing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and compositions for wound healing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and compositions for wound healing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2579128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.