Methods and compositions for use in perfusion applications

Chemistry: molecular biology and microbiology – Differentiated tissue or organ other than blood – per se – or... – Including perfusion; composition therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06218099

ABSTRACT:

INTRODUCTION
TECHNICAL FIELD
The technical field of this invention is plasma substitute solutions and their use in perfusion applications.
BACKGROUND OF THE INVENTION
Perfusion, in which a fluid is introduced and moved through a tissue or organ, e.g. via the circulatory system, plays a prominent role in many medical applications. Such applications include treatments for blood lost during surgery or trauma, or when a tissue, organ, group of organs or an entire subject needs to be maintained at a hypothermic or frozen state. Such applications also include applications in which a patient's blood is flowed through an external device, such as a cardiopulmonary bypass machine, where the extra circulatory volume space resulting from attachment of the patient's circulatory system to the device must be filled with a compatible blood substitute, i.e. blood volume expander.
Fluids that are employed in the majority of perfusion applications are physiologically acceptable. The first physiologically acceptable solutions employed for perfusion applications were derived from mammalian blood. Although such solutions have been used with success, because such solutions are derived from natural blood, they can contain various pathogenic substances, such as viral pathogens such as HIV, Hepatitis B, and other pathogens, e.g. prions such as those associated with Cruetzfeldt-Jakob disease, and the like. Disadvantages associated with the use of such solutions include the need for donors and the requirement to perform expensive screening tests to identity pathogenic agents. As such, use of blood substitute and plasma substitute solutions derived from natural blood are not free of complication.
Accordingly, a variety of synthetic blood and plasma substitute solutions have been developed which are prepared from non-blood derived components. Although synthetic plasma-like solutions have found increasing use in a variety of applications, no single solution has proved suitable for use in all potential applications.
Therefore, there is continued interest in the development of new methods of perfusion, as well as solutions for use therein.
Relevant Literature
Various physiologically acceptable solutions, particularly blood substitute solutions, and methods for their use are described in U.S. Pat. Nos.: RE 34,077; 3,677,024; 3,937,821; 4,001,401; 4,061,736; 4,216,205; 4,663,166; 4,812,310; 4,908,350; 4,923,442; 4,927,806; 5,082,831; 5,084,377; 5,130,230; 5,171,526; 5,210,083; 5,274,001; 5,374,624; and 5,407,428.
Additional references describing physiologically acceptable solutions, including blood substitute solutions include: Bishop et al., Transplantation (1978) 25:235-239; Messmer et al., Characteristics, Effects and Side-Effects of Plasma Substitutes, pp 51-70; Rosenberg, Proc.12th Congr. Int. Soc. Blood Transf.(1969); Spahn, Anesth. Analg. (1994) 78:1000-1021 Biomedical Advances In Aging (1990)(Plenum Press) Chapter 19; Wagner et al., Clin. Pharm. (1993) 12:335; ATCC Catalogue of Bacteria & Bacteriophages (1992) p 486; and 06-3874-R8-Rev. May (1987) Abbott Laboratories, North Chicago, Ill. 60064, USA.
Additional references describing various applications of such solutions, including hypothermic applications, include: Bailes et al., Cryobiology (1990) 27:615-696(pp 622-623); Belzer et al., Transplantation (1985) 39:118-121; Collins, Transplantation Proceedings (1977) 9:1529; Fischer et al., Transplantation (1985) 39:122; Kallerhoff et al., Transplantation (1985) 39:485; Leavitt et al., FASB J. (1990) 4: A963; Ross et al., Transplantation (1976) 21:498; Segall et al. FASB J. (1991) 5:A396; Smith, Proc. Royal Soc. (1956) 145: 395; Waitz et al., FASB J. (1991) 5.
Lehninger, Biochemistry (2
nd
Ed., 1975), pp 829ff provides a review of blood and its constituents.
SUMMARY OF THE INVENTION
Methods and compositions are provided for use in perfusion applications. In the subject methods, a subject (e.g. an organism or derivative thereof, such as an organ or tissue) is sequentially perfused with at least one quantity of a plasma-like solution and at least one quantity of a fluid blood composition. In one preferred embodiment, the subject is then perfused with at least one additional quantity of the plasma-like solution. The plasma-like solution is a non-naturally occurring solution that at least includes electrolytes, an oncotic agent and a dynamic buffering system. The fluid blood composition is a fluid composition derived from whole blood and generally comprises: red blood cells, whole plasma or fractions thereof, whole blood, etc. Also provided are kits and systems for use in performing the subject methods. The subject methods and compositions find use in a variety of different applications, including the treatment of hypovolemic subjects, in regional chemotherapy, in cryogenic preservation, and the like.
DESCRIPTION OF THE SPECIFIC EMBODIMENTS
Methods and compositions for use in the perfusion of a subject are provided. In the subject methods, at least a plasma-like solution and fluid blood composition are sequentially introduced into the circulatory system of a subject. In a preferred embodiment, the subject is then perfused with an additional volume of plasma-like solution. The plasma-like solution is a non-naturally occurring solution comprising at least electrolytes, an oncotic agent and a dynamic buffering system. The fluid blood composition is whole blood or a fluid composition derived from whole blood, such as purified red blood cells, whole plasma or fractions thereof. Also provided are kits and systems for carrying out the subject methods. The subject methods and compositions find use in a variety of different applications, including the treatment of hypovolemic subjects, regional chemotherapy, tissue and organ preservation, and the like. In further describing the subject invention, the subject solutions are detailed first followed by a discussion of the subject methods in which the solutions find use.
Before the subject invention is further described, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.
It must be noted that as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Unless defined otherwise all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.
Fluid Compositions
As mentioned above, a critical aspect of the subject invention is the sequential administration of at least two different types of fluid compositions: (a) a non-naturally occurring plasma-like solution; and (b) a fluid blood composition. The subject methods may further include the administration of one or more additional types of solutions, which solutions are generally derivatives of the non-naturally occurring plasma-like solution. Each of the solutions finding use in the subject invention are described in greater detail below.
Non-Naturally Occurring Plasma-Like Solutions
The subject non-naturally occurring plasma-like solutions are solutions that do not occur in nature, e.g. they are not produced by animals or plants or other organisms. As such, the subject solutions are synthetic in that they are produced through some human interaction or processing, such as purification, separation, genetic engineering, laboratory combination, and the like.
The plasma-like solutions of the subject invention are physiologically acceptable, by which is meant that the solutions may be introduced into the vasculature of a host without inherently causing a toxic reaction. The solutions have a pH ranging from abo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and compositions for use in perfusion applications does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and compositions for use in perfusion applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and compositions for use in perfusion applications will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2492345

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.