Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Web – sheet or filament bases; compositions of bandages; or...
Reexamination Certificate
2000-12-22
2001-10-09
Page, Thurman K. (Department: 1615)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Web, sheet or filament bases; compositions of bandages; or...
C424S489000, C424S490000, C424S484000, C424S093700, C424S422000
Reexamination Certificate
active
06299898
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to tissue healing and regeneration and, more particularly, to methods and systems for wound healing.
BACKGROUND OF THE INVENTION
The primary goal in the treatment of wounds is to achieve wound closure. Open cutaneous wounds represent one major category of wounds and include burn wounds, neuropathic ulcers, pressure sores, venous stasis ulcers, and diabetic ulcers. Open cutaneous wounds routinely heal by a process which comprises six major components: i) inflammation, ii) fibroblast proliferation, iii) blood vessel proliferation, iv) connective tissue synthesis v) epithelialization, and vi) wound contraction. Wound healing is impaired when these components, either individually or as a whole, do not function properly. Numerous factors can affect wound healing, including malnutrition, infection, pharmacological agents (e.g., actinomycin and steroids), diabetes, and advanced age [see Hunt and Goodson in
Current Surgical Diagnosis
&
Treatment
(Way; Appleton & Lange), pp. 86-98 (1988)].
Wounds which do not readily heal can cause the subject considerable physical, emotional, and social distress as well as great financial expense [see, e.g., Richey et al., Annals of Plastic Surgery 23(2):159-165 (1989)]. Indeed, wounds that fail to heal properly and become infected may require excision of the affected tissue. A number of treatment modalities have been developed as scientists' basic understanding of wounds and wound healing mechanisms has progressed.
The most commonly used conventional modality to assist in wound healing involves the use of wound dressings. In the 1960s, a major breakthrough in wound care occurred when it was discovered that wound healing with a moist occlusive dressings was, generally speaking, more effective than the use of dry, non-occlusive dressings [Winter, Nature 193:293-94 (1962)]. Today, numerous types of dressings are routinely used, including films (e.g., polyurethane films), hydrocolloids (hydrophilic colloidal particles bound to polyurethane foam), hydrogels (cross-linked polymers containing about at least 60% water), foams (hydrophilic or hydrophobic), calcium alginates (nonwoven composites of fibers from calcium alginate), and cellophane (cellulose with a plasticizer) [Kannon and Garrett, Dermatol. Surg. 21:583-590 (1995); Davies,
Burns
10:94 (1983)]. Unfortunately, certain types of wounds (e.g., diabetic ulcers, pressure sores) and the wounds of certain subjects (e.g., recipients of exogenous corticosteroids) do not heal in a timely manner (or at all) with the use of such dressings.
Several pharmaceutical modalities have also been utilized in an attempt to improve wound healing. For example, treatment regimens involving zinc sulfate have been utilized by some practitioners. However, the efficacy of these regimens has been primarily attributed to their reversal of the effects of sub-normal serum zinc levels (e.g., decreased host resistance and altered intracellular bactericidal activity) [Riley, Am. Fam. Physician 24:107 (1981)]. While other vitamin and mineral deficiencies have also been associated with decreased wound healing (e.g., deficiencies of vitamins A, C and D; and calcium, magnesium, copper, and iron), there is no strong evidence that increasing the serum levels of these substances above their normal levels actually enhances wound healing. Thus, except in very limited circumstances, the promotion of wound healing with these agents has met with little success.
What is needed is a safe, effective, and interactive means for enhancing the healing of chronic wounds. The means should be able to be used without regard to the type of wound or the nature of the patient population to which the subject belongs.
SUMMARY OF THE INVENTION
The present invention is directed at systems and methods for enhancing the healing of wounds, especially chronic wounds (e.g., diabetic wounds, pressure sores), involving the use of cultured keratinocytes. In some embodiments, the invention contemplates the use of keratinocytes grown on a transplantable solid support. The present invention is not limited by the nature of the solid support; indeed, the present invention contemplates the use of any three-dimensional support or matrix (e.g., matrices comprised of glycosaminoglycans) to which keratinocytes will adhere, divide, and maintain their functional behaviors (e.g., heal wounds).
In preferred embodiments, the solid support comprises collagen-coated beads. In particular embodiments, the collagen-coated beads are placed in an enclosure, compartment, bag, or similar barrier, said enclosure having pores, and the enclosure is then placed at the wound site for use as an interactive wound healing promoter. The present invention is not limited by the nature of enclosure; however, in one embodiment, the pores are large enough to permit the cells from the beads to exit the enclosure into the wound, while in another embodiment, the pores are too small to permit cells from the beads to exit the enclosure, but large enough to permit cellular factors to exit the enclosure or wound fluid components to enter the enclosure. In certain embodiments, the enclosures are replaced every few days until the wound heals.
More particularly, the present invention contemplates a system for the treatment of wounds, comprising a) keratinocytes on a solid support; and b) an enclosure, the enclosure housing the solid support. In some embodiments, the solid support comprises beads, and in further embodiments, the beads are macroporous. In still further embodiments, the beads are coated with an extracellular matrix (e.g., collagen). While the present invention is not limited to the nature of the keratinocytes, in a preferred embodiment the keratinoctes are viable and growing.
In additional embodiments, the enclosure comprises a mesh material, having pores. In certain embodiments, the mesh material comprises polyester. In one embodiment, the pores are large enough to permit the cells from the beads to exit the enclosure into the wound, while in another embodiment, the pores are too small to permit cells from the beads to exit the enclosure, but large enough to permit cellular factors (e.g., cytokines) to exit the enclosure or wound fluid components to enter the enclosure.
Moreover, in further embodiments, the enclosure comprises a biocompatible membrane. In additional embodiments, the enclosure comprises means for removing the enclosure from a wound. In particular embodiments, the removal means comprises a handle or string attached to the enclosure.
The present invention also contemplates a method for treating a wound, comprising a) providing: i) keratinocytes on a solid support, ii) an enclosure, and iii) a subject having a least one wound; b) placing the keratinocyte-containing solid support into the enclosure so as to produce a keratinocyte-containing enclosure; and c) positioning the keratinocyte-containing enclosure in the wound of the subject under conditions such that the healing of the wound is promoted. Additional embodiments further comprise, after step b) and prior to step c), sealing the enclosure to produce a sealed keratinocyte-containing enclosure. Finally, some embodiments further comprise step d), covering the wound containing the keratinocyte-containing enclosure with a dressing.
DEFINITIONS
To facilitate understanding of the invention set forth in the disclosure that follows, a number of terms are defined below.
The term “wound” refers broadly to injuries to the skin and subcutaneous tissue initiated in different ways (e.g., pressure sores from extended bed rest and wounds induced by trauma) and with varying characteristics. Wounds may be classified into one of four grades depending on the depth of the wound: i) Grade I: wounds limited to the epithelium; ii) Grade II: wounds extending into the dermis; iii) Grade III: wounds extending into the subcutaneous tissue; and iv) Grade IV (or full-thickness wounds): wounds wherein bones are exposed (e.g., a bony pressure p
Adamson Belinda
Garner Warren
Gilmont Robert
Lindblad William
Marcelo Cynthia
Medlen & Carroll LLP
Page Thurman K.
Pulliam Amy E
Regents of the University of Michigan
LandOfFree
Methods and compositions for the treatment of wounds does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and compositions for the treatment of wounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and compositions for the treatment of wounds will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2597506