Chemistry: molecular biology and microbiology – Micro-organism – per se ; compositions thereof; proces of... – Bacteria or actinomycetales; media therefor
Reexamination Certificate
2006-08-01
2006-08-01
Prouty, Rebecca E. (Department: 1652)
Chemistry: molecular biology and microbiology
Micro-organism, per se ; compositions thereof; proces of...
Bacteria or actinomycetales; media therefor
C435S193000, C435S091400, C435S252330, C435S320100, C435S015000, C435S069100
Reexamination Certificate
active
07083970
ABSTRACT:
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
REFERENCES:
patent: 5370995 (1994-12-01), Hennecke et al.
Ohno et al. Co-expression of yeast amber suppressor tRNATyr and tyrosyl-tRNA synthetase inEscherichia coli: possibility to expand the genetic code. J Biochem (Tokyo). (1998) 124(6):1065-8.
Saks et al. An Engineered Tetrahymena tRNAGIn for in Vivo Incorporation of Unnatural Amino Acids into Proteins by Nonsense Suppression. J. Biol. Chem. (1996) 271(38): 23169-23175.
Ibba M. Strategies for in vitro and in vivo translation with non-natural amino acids. Biotechnol Genet Eng Rev. (1996) 13:197-216.
Ibba et al Strategies for in vitro and in vivo translation with non-natural amino acids, 1995 Biotechnology and Genetic engineering reviews vol. 13, Dec. 1995.
Francklyn et al. (2002) “Aminoacyl-tRNA synthetases: Versatile players in the changing theater of translation.”RNA, 8:1363-1372.
Kiga et al. (2002) “An engineeredEscherichia colityrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system.”PNAS, vol. 99, No. 15, pp. 9715-9723.
Database NCBI, GenBank Accession No. E64348, Bult et al. ‘Complete genome sequence of the methanogenic archaeon,Methanococcus jannaschii,’ Gene Sequence, Jun. 03, 1996.
Liu et al. “Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into protein in vivo.”Proc, Natl. Acad. Sci. Sep. 1997, vol. 94, pp. 10092-10097.
Nagagawa et al. (2000) “Mutational Analysis of Invariant Valine B12 in Insulin: Implications for Receptor BInding.”Biochemistry, 39:15826-15835.
Anderson et al.,Exploring the Limits of Codon and Anticodon Size, Chemistry and Biology, vol. 9, 237-244 (2002).
Azoulay et al.,Glutamine analogues as Potential Antimalarials,. Eur. J. Med. Chem. 26, 201-5 (1991).
Bain et al.,Biosynthetic site-specific Incorporation of a non-natural amino acid into a polypeptide, J. Am. Chem. Soc., 111:8013-8014 (1989).
Barton et al.,Synthesis of Novel a-Amino-Acids and Derivatives Using Radical Chemistry: Synthesis of L- and D-a-Amino-Adipic Acids, L-a-aminopimelic Acid and Appropriate Unsaturated Derivatives. Tetrahedron Lett,. 43, 4297-4308 (1987).
Boles et al.,Nat. Struct. Biol., 1:283 (1994).
Bradley et al.,tRNA2GIn Su+2 mutants that increase amber suppression, J. Bacteriol. 145:704-712 (1981).
Brick et al.,J. Mol. Biol., 208:83-98.
Brunner,New Photolabeling and crosslinking methods, Annu. Rev. Biochem., 62:483-514 (1993).
Budisa et al.,Eur. J. Biochem., 230:788 (1995).
Budisa et al.,FASEB J. 13:41-51 (1999).
Budisa et al.,J. Mol. Biol., 270:616 (1997).
Budisa et al.,Proc. Natl. Acad. Sci. USA, 94:455 (1998).
Christie & Rapoport,Synthesis of Optically Pure Pipecolates from L-Asparagine. Application to the Total Synthesis of(+)-Apovincamine through Amino Acid Decarbonylation and Iminium Ion Cyclization. J. Org. Chem. 50:1239-1246 (1985).
Cornish et al.,Angew. Chem . Int. Ed. Engl., 34:621 (1995).
Cornish et al.,J. Am. Chem. Soc., 118:8150-8151 (1996).
Craig et al.,Absolute Configuration of the Enantiomers of 7-Chloro-4[[4-(diethylamino)-1-methylbutyl]amino]quinoline(Chloroquine).J. Org. Chem, 53, 1167-1170 (1983).
Doctor & Mudd,J. Biol. Chem., 238:3677 (1963).
Doring et al.,Science, 292:501 (2001).
Dougherty,Curr. Opin. Chem. Biol., 4:645 (2000).
Duewel et al.,Biochemistry, 36:3404 (1997).
Dunten & Mowbray,Crystal structure of the dipeptide binding protein from Escherichia coli involved in active transport and chemotaxis. Protein Science4, 2327-34 (1995).
Ellman et al.,Biosynthetic method for introducing unnatural amino acids site specifically into proteins, Methods in Enz., 202:301-336 (1992).
Ellman et al.,Site-specific incorporation of novel backbone structures into proteins, Science, 255:197-200 (1992).
England et al.,Cell, 96:89 (1999).
Fechter et al.,Major tyrosine identity determinants in Methanococcus jannaschii and Saccharomyces cerevisiae tRNATyr are conserved but expressed differently, Eur. J. Biochem, 268:761-767 (2001).
Francisco et al.,Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc. Natl Acad Sci USA, 90:10444-8 (1993).
Friedman & Chatterrji,Synthesis of Derivatives of Glutamine as Model Substrates for Anti-Tumor Agents. J. Am. Chem. Soc. 81, 3750-3752 (1959).
Furter,Protein Sci., 7:419 (1998).
Gabriel & McClain,A set of plasmids constitutively producing different RNA levels in Escherichia coli, J. Mol. Biol. 290 (1999) 385-389.
Gallivan et al.,Chem. Biol., 4:739 (1997).
Giegé et al.,Biochimie, 78:605 (1996).
Giegé et al.,Universal rules and idiosyncratic features in tRNA identity, Nucleic Acids Res. 26:5017-5035 (1998).
Gay et al.,FEBS Lett. 318:167 (1993).
Gucklan et al.,Angew. Chem. Int. Ed. Engl., 36, 2825 (1997).
Hamano-Takaku et al.,J. Biol. Chem., 275:40324 (2000).
Hartley et al.,Expression of its cloned inhibitor permits expression of a cloned ribonuclease, J. Mol. Biol. 202:913-915 (1988).
He, et al.,Microbiology, 147:2817-2829 (2001).
Hendrickson et al.,EMBO J., 9:1665 (1990).
Hirao, et al.,An unnatural base pair for incorporating amino acid analogues into protein, Nature Biotechnology, 20:177-182 (2002).
Hohsaka et al.,J. Am. Chem. Soc., 121:34 (1999).
Ibba & Hennecke,FEBS Lett., 364:272 (1995).
Ibba et al.,Biochemistry, 33:7107 (1994).
Jakubowski & Goldman,Microbiol. Rev., 56:412 (1992).
Jeruzaimi & Steitz,Embo J., 17, 4101-4113 (1998).
Jucovic & Hartley,Protein-protein interaction: a genetic selection for compensating mutations at the barnase-barstar interface. Proceedings of the National Academy of Sciences of the United States of America, 93:2343-2347 (1996).
Kiick & Tirrell,Tetrahedron, 56:9487 (2000).
King et al.,A New Synthesis of Glutamine and of γ-Dipeptides of Glutamic Acid from Phthylated Intermediates. J. Chem. Soc., 4:3315-3319 (1949).
Kleeman et al.,J. Biol. Chem., 272:14420 (1997).
Kleina et al.,Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency, J. Mol. Bio. 213:705-717 (1990).
Kool,Curr. Opin. Chem. Biol., 4:602 (2000).
Koskinen & Rapoport,Synthesis of 4-Substituted Prolines as Conformationally Constrained Amino Acid Analogues J. Org. Chem. 54, 1859-1866. (1989).
Kowal & Oliver,Nucl. Acid. Res., 25:4685 (1997).
Kowal et al.,Proc. Natl. Acad. U S A, 98:2268 (2001).
Krieg et al.,Photocrosslinking of the signal sequence of nascent preprolactin of the 54-kilodalton polypeptide of the signal recognition particle, Proc. Natl. Acad. Sci. 83(22):8604-8608 (1986).
Kwok & Wong,Can. J. Biochem., 58:213 (1980).
Lee et al.,Biotechnology Letters, 20:479-482, (1998).
Liu & Schultz,Progress toward the evolution of an organism with an expanded genetic code, Proc. Natl. Acad. Sci. USA96:4780-4785 (1999).
Liu et al.,Chem. Biol., 4:685 (1997).
Liu et al.,Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo, Proc. Natl. Acad. Sci. USA94:10091-10097 (1997).
Lorincz et al.,Cytometry, 24, 321-329 (1996).
Lu et al.,Nat. Neurosci., 4:239 (2001).
Ma et al.,Biochemistry, 32:7939 (1993).
Magllery,Expanding the Genetic Code: Selection of Efficient Suppressors of Four-base Codons and Identification of “Shifty” Four-base Codons with a Library Approach in Escherichia coli, J. Mol. Biol. 307:755-769 (2001).
Matsoukas et al.,J. Med. Chem., 38:4660-4669 (1995).
McMinn et al.,J. Am. Chem. Soc., 121:11586 (1999).
Meggers et al.,J. Am. Chem. Soc., 12
Anderson John Christopher
Chin Jason
Liu David R.
Magliery Thomas J.
Meggers Eric L.
Gebreyesus Kagnew
Prouty Rebecca E.
Quine Intellectual Property Law Group P.C.
The Regents of the University of California
The Scripps Research Institute
LandOfFree
Methods and compositions for the production of orthogonal... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and compositions for the production of orthogonal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and compositions for the production of orthogonal... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3695136