Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
1999-02-05
2001-08-14
Carlson, Karen Cochrane (Department: 1653)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C435S069100, C435S252300, C435S320100, C435S325000, C435S471000, C435S070100, C435S071100, C435S071200, C536S023500
Reexamination Certificate
active
06274339
ABSTRACT:
1. INTRODUCTION
The present invention relates to mammalian mahogany genes, including the human mahogany gene, which are novel genes involved in the control of mammalian body weight. The invention encompasses nucleotide sequences of the mahogany gene, host cell expression systems of the mahogany gene, and hosts which have been transformed by these expression systems, including transgenic animals. The invention also encompasses novel mahogany gene products, including mahogany proteins, polypeptides and peptides containing amino acid sequences mahogany proteins, fusion proteins of mahogany proteins polypeptides and peptides, and antibodies directed against such mahogany gene products.
The present invention also relates to methods and compositions for the diagnosis and treatment of mammalian body weight disorders, including obesity, cachexia, and anorexia, and for the identification of subjects susceptible to such disorders. Further, the invention relates to methods of using the mahogany gene and gene products of the invention for the identification of compounds which modulate the expression of the mahogany gene and/or the activity of the mahogany gene product. Such compounds can be useful as therapeutic agents in the treatment of mammalian body weight disorders, including obesity, cachexia, and anorexia.
2. BACKGROUND OF THE INVENTION
Obesity represents the most prevalent of body weight disorders, and it is the most important nutritional disorder in the western world, with estimates of its prevalence ranging from 30% to 50% within the middle-aged population. Other body weight disorders, such as anorexia nervosa and bulimia nervosa, which together affect approximately 0.2% of the female population of the western world, also pose serious health threats. Further, such disorders as anorexia and cachexia (wasting) are also prominent features of other diseases such as cancer, cystic fibrosis, and AIDS.
Obesity, defined as an excess of body fat relative to lean body mass, also contributes to other diseases. For example, this disorder is responsible for increased incidence of diseases such as coronary artery disease, hypertension, stroke, diabetes, hyperlipidemia, and some cancers (See, e.g., Nishina, P. M. et al., 1994, Metab. 43: 554-558; Grundy, S. M. & Barnett, J. P., 1990, Dis. Mon. 36: 641-731). Obesity is not merely a behavioral problem, i.e., the result of voluntary hyperphagia. Rather, the differential body composition observed between obese and normal subjects results from differences in both metabolism and neurologic/metabolic interactions. These differences seem to be, to some extent, due to differences in gene expression, and/or level of gene products or activity (Friedman, J. M. et al., 1991, Mammalian Gene 1: 130-144).
The epidemiology of obesity strongly shows that the disorder exhibits inherited characteristics (Stunkard, 1990, N. Eng. J. Med. 322: 1438). Moll et al. have reported that, in many populations, obesity seems to be controlled by a few genetic loci (Moll et al., 1991, Am. J. Hum. Gen. 49: 1243). In addition, human twin studies strongly suggest a substantial genetic basis in the control of body weight, with estimates of heritability of 80-90% (Simopoulos, A. P. & Childs, B., eds., 1989, in “Genetic Variation and Nutrition in Obesity”, World Review of Nutrition and Diabetes 63, S. Karger, Basel, Switzerland; Borjeson, M., 1976, Acta. Paediatr. Scand. 65: 279-287).
In other studies, non-obese persons who deliberately attempted to gain weight by systematically over-eating were found to be more resistant to such weight gain and able to maintain an elevated weight only by very high caloric intake. In contrast, spontaneously obese individuals are able to maintain their status with normal or only moderately elevated caloric intake. In addition, it is a commonplace experience in animal husbandry that different strains of swine, cattle, etc., have different predispositions to obesity. Studies of the genetics of human obesity, and of animal models of obesity demonstrate that obesity results from complex defective regulation of both food intake, food induced energy expenditure, and of the balance between lipid and lean body anabolism.
There are a number of genetic diseases in man and other species which feature obesity among their more prominent symptoms, along with, frequently, dysmorphic features and mental retardation. For example, Prader-Willi syndrome (PWS; reviewed in Knoll, J. H. et al., 1993, Am. J. Med. Genet. 46: 2-6) affects approximately 1 in 20,000 live births, and involves poor neonatal muscle tone, facial and genital deformities, and generally obesity.
In addition to PWS, many other pleiotropic syndromes have been characterized which include obesity as a symptom. These syndromes are genetically straightforward, and appear to involve autosomal recessive alleles. Such diseases include, among others, Ahlstroem, Carpenter, Bardet-Biedl, Cohen, and Morgagni-Stewart-Monel Syndromes.
A number of models exists for the study of obesity (see, e.g., Bray, G. A., 1992, Prog. Brain Res. 93: 333-341; and Bray, G. A., 1989, Amer. J. Clin. Nutr. 5: 891-902). For example, animals having mutations which lead to syndromes that include obesity symptoms have also been identified. Attempts have been made to utilize such animals as models for the study of obesity, and the best studied animal models to date for genetic obesity are mice. For reviews, see, e.g., Friedman, J. M. et al., 1991, Mamm. Gen. 1: 130-144; Friedman, J. M. and Liebel, R. L., 1992, Cell 69: 217-220.
Studies utilizing mice have confirmed that obesity is a very complex trait with a high degree of heritability. Mutations at a number of loci have been identified which lead to obese phenotypes. These include the autosomal recessive mutations obese (ob), diabetes (db), fat (fat), and tubby (tub).
The dominant Yellow mutation (Ay) at the agouti locus causes a pleiotropic syndrome which causes moderate adult onset obesity, a yellow coat color, and a high incidence of tumor formation (Herberg, L. and Coleman, D. L., 1977, Metabolism 26:59), and an abnormal anatomic distribution of body fat (Coleman, D. L., 1978, Diabetologia 14:141-148). The mutation causes the widespread expression of a protein which is normally seen only in neonatal skin (Michaud, E. J. et al., 1994, Genes Devel. 8:1463-1472). The agouti protein has been reported to be a competitive antagonist of &agr;-MSH binding to the melanocortin receptors MC1-R and MC4-R in vitro (Lu et al., 1996, Nature 371:799-802), and the authors speculated that de-regulated ubiquitous expression of agouti may lead to obesity by antagonism of melanocortin receptors expressed outside the hair follicles.
Mahogany (mg) and mahoganoid (md) are mutations that suppress the phenotypic effects of agouti protein in vivo (Lane and Green, 1960, J. Hered. 51: 228-230). The mahogany and mahoganoid mutation have been mapped to mouse chromosomes 2 and 16, respectively (Green, 1989, “Catalog of mutant genes and polymorphic loci”, pp. 12-403 in
Genetic Variants and Strains of the Laboratory Mouse
, Lyon, M. F. and Searle, A.G., eds., Oxford University Press, Oxford). Mutations of both mg and md have been shown to suppress the effects of agouti on obesity as well as on coat color (Miller et al., 1997, Genetics 146: 1407-1415).
In summary, therefore, obesity, which poses a major, worldwide health problem, represents a complex, highly heritable trait. Given the severity, prevalence, and potential heterogeneity of such disorders, there exists a great need for the identification of those genes that participate in the control of body weight.
3. SUMMARY OF THE INVENTION
The present invention relates to the identification of novel nucleic acid molecules and proteins encoded by such nucleic acid molecules that are involved in the control of mammalian body weight, and which, further, are associated with mammalian body weight disorders such as obesity, cachexia, and anorexia. The nucleic acid molecules of the present invention represent the genes corresponding to the mammalian mahogany gene, includin
Moore Karen
Nagle Deborah Lynn
Carlson Karen Cochrane
Millennium Pharmaceuticals Inc.
Pennie & Edmonds LLP
Robinson Patti
LandOfFree
Methods and compositions for the diagnosis and treatment of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and compositions for the diagnosis and treatment of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and compositions for the diagnosis and treatment of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2524457