Methods and compositions for pain management

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving hydrolase

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S004000, C435S007100, C435S007400, C435S975000

Reexamination Certificate

active

06764831

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to methods and diagnostic kits for providing an objective diagnosis of pain or stress experienced by a patient, and to compositions and methods for the alleviation of pain or stress. The invention further relates to reliable diagnostic and treatment tools useful for indicating the efficacy of pain or stress relieving compositions or methods, and the amount of relief provided by conventional treatments.
2. Description of the Background
Pain is a major aliment affecting the population. The analgesic industry and its advertisements are constant reminders of the magnitude of the problem in the population. Of the many types of medical problems involving pain as a major symptom, chronic spinal pain, with its overwhelming presence in the United States and other countries, is one of the most difficult to treat. It is estimated that primary and secondary expenditures associated with chronic spinal pain averages about $100 billion annually in the United States alone. The collateral loss of private and corporate productivity, while never quantitated, is also expected to be significant.
Health care professionals treating patients with chronic spinal pain recognize the limitations of modern diagnostic methods for assessing chronic spinal pain. Current methods for assessment such as, for example, history and physical examination, questionnaires, x-rays, imaging, electromyelograms, imaging techniques and myelograms all suffer from inherent limitation because of their indirect nature. The prevalence of false positive indicators of pain as well as the rise of pain management industries such as clinics, practitioners and alternative treatment centers, give testimony to the problem and the need for objective, accurate laboratory data.
Accurate assessment of a patient's pain is a prerequisite to the successful diagnosis and treatment of chronic spinal pain. Without an objective standard, meaningful comparisons of different treatment protocols will rely on the subjective memories of the patient or the health care worker. Age, stress, infirmity and weakness from long illness may affect the patient's memory. Further, patient self-assessments are of limited value because patients do not always communicate their pain intensity accurately or effectively. Adjectives such as burning, sharp, pressing, stabbing and unbearable are of limited value for comparison between patients. Finally, comparisons of patients with different social, regional, language or cultural background may be extremely difficult because of the choice of adjectives.
In spite of the difficulties in assessment, health care professionals including psychiatrists and psychologists must attempt to adequately assess and manage pain. These attempts require a determination of whether the pain or stress is severe, moderate or mild. A typical diagnosis will also involve a physical examination for accompanying characteristics such as sweating, palpitations, irregular heart beats, fainting sensation, aggravation of pain by deep breathing, pressure, heat or cold. These data, along with any other clinical information, and the patient's own description, is used to determine the most appropriate treatment.
Such pain assessment systems and treatment are empirical and can only provide a rough estimation of the actual amount of pain. Inaccuracies in the ability to prescribe proper amounts of medication result in an inability to provide proper pain treatment. Prescribing too little medication, i.e. under-medication where an inadequate amount of analgesic is used, results in needless suffering, reduced mobility, prolonged hospital stays and delayed recovery. Using too much medication, i.e. over-medication, can result in increased side effects, possible organ damage, allergic reaction, sleepiness, nausea or chemical dependency on analgesics.
Because the diagnosis of pain is difficult and often, if not usually, inaccurate, the ordinary course of treatment for pain will involve multiple office visits. Each visit will involve feedback from the patient, assessment of the efficacy of treatment and periodical changes in the dosage and the type of medications. Frequent office visits lead to an increase in health care cost and lost productivity, at least in part, due to inadequate treatment of pain (i.e. over-medication and under-medication). Further, if the patient's condition changes due to an increase or decrease in severity, a new round of initial medication, office visits, feedback and assessment has to be started to manage the pain. An accurate assessment of pain will result in reduced health care costs, with additional benefits such as earlier patient release, earlier mobilization and reduced reliance on hospital and outpatient medical facilities. Thus, given the significance and magnitude of chronic spinal pain, there is a long felt need for a simple, valid and reliable assay, to be used by health care workers to assess a patient's pain.
Pain is first perceived as a result of the stimulation of specialized nerve endings. The stimulation is transmitted through the nervous system to the brain where the patient perceives the signal as pain. The nervous system, including the brain, comprises about one hundred billion neurons. Each neuron is connected to other neurons in a network. On average, each neuron has, through its axonal and dendritic processes, ten thousand or more connections with other neurons. At the connections of neurons, the cell membranes are not fused but are separated by gaps known as synapses. Signal transduction from neuron to neuron or from neuron to organs (e.g. muscles cells, retina cells, etc.) occur through chemical mediators, referred to as neurotransmitters, that are released into the synapse.
The transmission of a nerve impulse (action potential) along a nerve is electrical and, as such, is measured in millivolts. However, at the synapses, the action potential is transmitted from the pre-synaptic membrane and the post-synaptic membrane of the receiving neuron via protein known as neurotransmitters. The gaps that exist between the neurons and the voltage and current levels of nerve impulses prevent these potentials from passing from one neuron to another neuron directly. Thus, neurotransmitters relay the action potentials between the neurons so nerve impulses can jump this intercellular gap.
When a nerve impulse arrives at the synapse, that impulse is transmitted into a chemical signal via the release of neurotransmitters. The neurotransmitters diffuse rapidly through the intercellular space until it reaches its intended target—the next neuron or muscle cell. There, the chemical neurotransmitter elicits a response in the recipient cell which induces a reaction such as a nerve impulse or a set of intracellular reactions (without necessarily being accompanied by a change of electrical properties). As a result of this process, a signal that began as a nerve impulse is transmitted from one neuron to another and either enhanced, inhibited or blocked.
About fifty neurotransmitters have now been identified. Some, such as glutamate or acetylcholine stimulate the transmission of nerve impulses and are referred to as excitatory; others, such as [Gamma]-aminobutyric acid (GABA), decrease nerve impulse transmission and are called inhibitory.
GABA, glutamate and acetylcholine (ACh) are the major transmitters of the brain. Evidence has confirmed cholinergic involvement in the antinociceptive effect of GABA (Kendall D. A., et al., J. Pharmacol. Exper. Therapeutics, 220(3):482-7, 1982). Additionally, ACh was thought to be involved in nociception with, or in association with, the endorphinergic and serotonergic systems (Schneck H. J. and Rupreht J., Acta Anaesth. Belg. 40(3):219-28, 1989). There is thought to be a close relationship between cholinergic afferents, substance P interneurons and serotonergic receptors (Feuerstein T. J. et al., Naunyn-Schmiedebergs Archives of Pharmacology, 354(5):618-26, 1996).
The descending connecti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and compositions for pain management does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and compositions for pain management, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and compositions for pain management will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3250431

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.