Methods and compositions for detection and analysis of...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S022100, C536S023100, C536S024300, C536S026600

Reexamination Certificate

active

10648945

ABSTRACT:
Methods, compositions and articles of manufacture for assaying a sample for a target polynucleotide are provided. A sample suspected of containing the target polynucleotide is contacted with a polycationic multichromophore and a sensor polynucleotide complementary to the target polynucleotide. The sensor polynucleotide comprises a signaling chromophore to receive energy from the excited multichromophore and increase emission in the presence of the target polynucleotide. The methods can be used in multiplex form. Kits comprising reagents for performing such methods are also provided.

REFERENCES:
patent: 4948843 (1990-08-01), Roberts et al.
patent: 4950587 (1990-08-01), Roberts et al.
patent: 5408109 (1995-04-01), Heeger et al.
patent: 5612221 (1997-03-01), Simons et al.
patent: 5869350 (1999-02-01), Heeger et al.
patent: 5881083 (1999-03-01), Diaz-Garcia et al.
patent: 5968762 (1999-10-01), Jadamec et al.
patent: 5990479 (1999-11-01), Weiss et al.
patent: 6280933 (2001-08-01), Glazer et al.
patent: 6534329 (2003-03-01), Heeger et al.
patent: 6743640 (2004-06-01), Whitten
patent: 2002/0009728 (2002-01-01), Bittner
patent: 2002/0034747 (2002-03-01), Bruchez
patent: 2002/0150759 (2002-10-01), Jones
patent: 2002/0177136 (2002-11-01), McBranch
patent: 2003/0054413 (2003-03-01), Kumaraswamy
patent: 2004/0241768 (2004-12-01), Whitten
patent: WO99/35288 (1999-07-01), None
patent: WO 00/14278 (2000-03-01), None
patent: WO 00/66790 (2000-11-01), None
patent: WO 02/081735 (2002-10-01), None
patent: WO 2004/001379 (2003-12-01), None
U.S. Appl. No. 60/202,647, filed May 8, 2000, Whitten.
U.S. Appl. No. 60/226,902, filed Aug. 23, 2000, Whitten.
U.S. Appl. No. 60/230,186, filed Sep. 1, 2000, Phillips.
U.S. Appl. No. 60/237,000, filed Sep. 29, 2000, Bruchez.
U.S. Appl. No. 60/240,216, filed Oct. 13, 2000, Bruchez.
U.S. Appl. No. 60/276,090, filed Mar. 16, 2001, Jones.
U.S. Appl. No. 60/314,094, filed Aug. 23, 2001, Burdick.
U.S. Appl. No. 60/314,101, filed Aug. 23, 2001, Whitten.
Wang et al., “Size-Specific Interactions Between Single- and Double-Stranded Oligonucleotides and Cationic Water-Soluble Oligofluorenes”, Adv. Funct. Mater., Jun. 2003, 13(6), 463-467.
Stork et al., “Energy Transfer in Mixtures of Water-Soluble Oligomers: Effect of Charge, Aggregation, and Surfactant Complexation”, Adv. Mater., Mar. 2002, 14(5), 361-366.
Leclerc, “Optical and Electrochemical Transducer Based on Functionalized Conjugated Polymers”, Adv. Mater., 1999, 11(18), 1491-1498.
Balakin et al., “Conjugates of oligonucleotides with polyaromatic fluorophores as promising DNA probes”, Biosensors & Bioelectronics, 1998, 13, 771-778.
Ho et al., “Colorimetric and Fluormetric Detection of Nucleic Acids Using Cationic Polythiophene Derivatives”, Angew. Chem. Int. Ed., 2002, 41(9), 1548-1551.
McQuade et al., “Conjugated Polymer-Bases Chemical Sensors”, Chem. Rev., 2000, 100, 2537-2574.
Chen et al., “Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer”, PNAS, Oct. 1999, 96(22), 12287-12292.
Liu et al., “Effect of Chromophore-Charge Distance in the Energy Transfer Properties of Water-Soluble Conjugated Oligomers”, J. Am. Chem. Soc., 2003, 125, 6705-6714.
Gaylord et al., “DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes”, PNAS, Aug. 2002, 99(17), 10954-10957.
Bronich et al., “Recognition of DNA Topology in Reactions between Plasmid DNA and Cationic Copolymers”, J. Am. Chem. Soc., Sep. 2000, 122(35), 8339-8343.
Chen et al., “Tuning the Properties of Conjugated Polyelectrolytes through Surfactant Complexation”, J. Am. Chem. Soc., 2000, 122, 9302-9303.
Gaylord et al., “Water-Soluble Conjugated Oligomers: Effect of Chain Length and Aggregation on Photoluminescene-Quenching Efficiencies”, J. Am. Chem. Soc., 2001, 123, 6417-6418.
Hong et al., “Water-Soluble Oligmer Dimers Based on Paracyclophane: A New optical Platform for Fluorescent Sensor Applications”, J. Am. Chem. Soc., 2002, 124, 11868-11869.
Gaylord et al., “DNA Hybridization Detection with Water-Soluble Conjugated Polymers and Chromophore-Labeled Single-Stranded DNA”, J. Am. Chem. Soc., 2003, 125, 896-900.
Zhou et al., “Fluorescent Chemosensors Based on Energy Migration in Conjugated Polymers: The Molecular Wire Approach to Increased Sensitivity”, J. Am. Chem. Soc., 1995, 117, 12593-12602.
Zhou et al., “Methodology for Enhancing the Sensitivity of Fluorescent Chemosensors: Energy Migration in Conjugated Polymers”, J. Am. Chem. Soc., 1995, 117, 7017-7018.
Hawkins et al., “Incorporation of a fluorescent guanosine analog into oligonucleotides and its application to a real time assay for the HIV-1 integrase 3′-processing reaction”, Nucleic Acids Research, 1995, 23(15), 2872-2880.
Cardullo et al., “Detection of Nucleic Acid Hybridization by Nonradiative Fluorescence Resonance Energy Transfer”, Proc. Natl. Acad. Sci. USA, Dec. 1998, 85, 8790-8794.
Gallot et al., “Poly(L-lysine) containing azobenzene units in the side chains: influence of the degree of substitution on liquid crystalline structure and thermotropic behaviour”, Liquid Crystals, 1997, 23(1), 137-146.
Wang et al., “Biosensors from conjugated polyelectrolyte complexes”, PNAS, Jan. 2002, 99(1), 49-53.
Lohse et al., “Fluorescein-Conjugated Lysine Monomers for Solid Phase Synthesis of Fluorescents Peptides and PNA Oligomers”, Bioconjugate Chem., 1997, 8, 503-509.
Smith et al., “The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis”, Nucleic Acids Research, 1985, 13(7) 2399-2412.
Wintermeyer et al., “Fluorescent Derivatives of Yeast tRNA(TM)”, Eur. J. Biochem., 1979, 98, 465-475.
Lipshutz et al., “High density synthetic oligonucleotide arrays”, Nature Genetics Supplement, Jan. 1999, 21, 20-24.
Nilsson et al., “Chip solution detection of DNA hybridization using a luminescent zwitterionic polythiophene derivative”, Nature Materials, Jun. 2003, 2, 419-424 (Supplementary Information pp. 1-2).
Dore et al., “Fluorescent Polymeric Transducer for the Rapid, Simple, and Specific Detection of Nucleic Acids at the Zeptomole Level”, J. Am. Chem. Soc., 2004, 126, 4240-4244.
Ranade et al., “High-Throughput Genotyping with Single Nucleotide Polymorphisms”, Genone Research, 2001, 11, 1262-1268.
Schork et al., “Single nucleotide polymorphisms and the furture if genetic epidemiology”, Clin. Genet., 2000, 58, 250-264.
Wang et al., “Optically Amplified RNA-Protein Detection Methods Using Light-Harvesting Conjugated Polymers”, Adv. Mater., Sep. 2003, 15(17), 1425-1428.
Liu et al., “Homogeneous Fluorescents-Based DNA Detection with Water-Soluble Conjugated Polymers”, Chem. Mater., 2004, 16, 4467-4476.
Wolcott, “Advances in Nucleic Acid-Based Detection Methods”, Clinical Microbiology Reviews, Oct. 1992, 5(4), 370-386.
Umek et al., “Electronic Detection of Nucleic Acids, A Versatile Platform for Molecular Diagnostics”, Journal of Molecular Diagnostics, May 2001, 3(2), 74-84.
Stevens et al., “Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole)”, Physical Review B, Apr. 2001, 63, 1-18.
Wang, “Survey and Summary From DNA biosensors to gene chips”, Nucleic Acids Research, 2000, 28(16), 3011-3016.
Beier et al., “Versatile derivatisation of solid support media for covalent bonding on DNA-microchips”, Nucleic Acids Research, 1999, 27(9), 1970-1977.
Bardea, A. et al. Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy:

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and compositions for detection and analysis of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and compositions for detection and analysis of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and compositions for detection and analysis of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3796986

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.