Methods and cement compositions for cementing in...

Wells – Processes – Cementing – plugging or consolidating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S283000, C106S726000, C106S730000, C106S805000

Reexamination Certificate

active

06708760

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to methods of cementing subterranean zones utilizing foamed or non-foamed cement compositions having improved rheology, fluid loss control and set retardation.
2. Description of the Prior Art
Foamed and non-foamed hydraulic cement compositions are often utilized in cementing subterranean zones penetrated by well bores. For example, foamed and non-foamed cement compositions are used in primary well cementing operations whereby strings of pipe such as casing and liners are cemented in well bores. In performing primary cementing, a cement composition is pumped into the annular space between the walls of a well bore and the exterior surfaces of a pipe string disposed therein. The cement composition is permitted to set in the annular space thereby forming an annular sheath of hardened substantially impermeable cement therein. The cement sheath physically supports and positions the pipe string in the well bore and bonds the exterior surfaces of the pipe string to the walls of the well bore whereby the undesirable migration of fluids between zones or formations penetrated by the well bore is prevented.
The foamed and non-foamed cement compositions utilized for cementing in subterranean zones penetrated by well bores must have good rheological properties, low fluid losses and sufficient set retardation at high temperatures. In addition, the cement compositions must have adequate thickening times and compressive strengths. Heretofore, carboxymethylhydroxyethylcellulose (CMHEC) has been used in foamed and non-foamed cement compositions to control fluid loss and provide set retardation to the cement compositions. While CMHEC has been used successfully as an additive in cement compositions used for cementing subterranean zones, there are continuing needs for improved cementing methods, cement compositions and cement additives for providing improved rheologies, viscosities, fluid loss control properties, thickening times and compressive strengths to cement compositions placed in subterranean zones.
SUMMARY OF THE INVENTION
The present invention provides improved methods, cement compositions and additives for cementing subterranean zones penetrated by well bores which meet the needs described above and overcome the deficiencies of the prior art. The improved methods of this invention are basically comprised of the following steps. A cement composition is prepared or provided comprised of a hydraulic cement, sufficient water to form a slurry and an additive for providing improved rheology, fluid loss control and set retardation to the cement composition comprised of carboxymethylhydroxyethylcellulose having in the range of from about 0.62 to about 2.21 moles of hydroxyethyl substitution and in the range of from about 0.44 to about 0.52 degrees of carboxymethyl substitution, and a 2% by weight aqueous solution of the carboxymethylhydroxyethylcellulose has a Höppler viscosity in the range of from about 55 mPa.s to about 359 mPa.s. Thereafter, the cement composition is placed in a subterranean zone and allowed to set into a solid mass therein.
An improved cement composition for cementing in a subterranean zone is also provided by this invention. The improved cement composition is comprised of a hydraulic cement, sufficient water to form a slurry and an additive for providing improved rheology, fluid loss control and set retardation to the cement composition comprised of carboxymethylhydroxyethylcellulose having in the range of from about 0.62 to about 2.21 moles of hydroxyethyl substitution, and in the range of from about 0.44 to about 0.52 degrees of carboxymethyl substitution and a 2% by weight aqueous solution of the carboxymethylhydroxyethylcellulose has a Höppler viscosity in the range of from about 55 mPa.s to about 359 mPa.s.
An improved cement composition additive for providing improved rheology, fluid loss control and set retardation to a cement composition is comprised of carboxymethylhydroxyethylcellulose having in the range of from about 0.62 to about 2.21 moles of hydroxyethyl substitution and in the range of from about 0.44 to about 0.52 degrees of carboxymethyl substitution, and a 2% by weight aqueous solution of the carboxymethylhydroxyethylcellulose has a Höppler viscosity in the range of from about 55 mPa.s to about 359 mPa.s.
The objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.
DESCRIPTION OF PREFERRED EMBODIMENTS
As mentioned above, carboxymethylhydroxyethylcellulose (hereinafter referred to as CMHEC) has heretofore been used as a set retarder and fluid loss control additive in foamed and non-foamed cement compositions. While the use of CMHEC has improved the rheology of the prior cement compositions and provided some fluid loss control and set retardation properties thereto, improved such properties are needed particularly in subterranean zones having temperatures in the range of from about 110° F. to about 220° F.
It has been discovered that CMHEC with a particular ethylene oxide substitution and a particular carboxymethyl substitution provides a much improved additive for foamed and non-foamed cement compositions. That is, the foamed and non-foamed cement compositions of the present invention which include CMHEC having in the range of from about 0.62 to about 2.21 moles of hydroxyethyl substitution and in the range of from about 0.44 to about 0.52 degrees of carboxymethyl substitution have enhanced properties as compared to prior CMHEC additives. That is, the cement compositions of this invention have superior rheology, fluid loss control properties, thickening times and compressive strengths as compared to the prior art cement compositions.
An improved method of this invention is comprised of the following steps. A cement composition is prepared or provided comprised of a hydraulic cement, sufficient water to form a slurry and an additive for providing improved rheology, fluid loss control and set retardation to the cement composition comprised CMHEC having in the range of from about 0.62 to about 2.21 moles of hydroxyethyl substitution and in the range of from about 0.44 to about 0.52 degrees of carboxymethyl substitution, and a 2% by weight aqueous solution of the CMHEC has a Höppler viscosity in the range of from about 55 mPa.s to about 359 mPa.s.
An improved cement composition of this invention is comprised of a hydraulic cement, sufficient water to form a slurry and an additive for providing improved rheology, fluid loss control and set retardation to the cement composition comprised of CMHEC having in the range of from about 0.62 to about 2.21 moles of hydroxyethyl substitution and in the range of from about 0.44 to about 0.52 degrees of carboxymethyl substitution, and a 2% by weight aqueous solution of the CMHEC has a Höppler viscosity in the range of from about 55 mPa.s to about 359 mPa.s. The CMHEC of this invention is present in the cement composition in an amount in the range of from about 0.1% to about 2.5% by weight of the hydraulic cement therein.
The Höppler viscosity measurement in units of milliPascal.seconds (mPa.s) is determined using a Falling Ball Viscometer. In the use of such a viscometer, a fluid sample (the viscosity of which is to be measured) is placed in a tilted glass measuring tube surrounded by a jacket to allow accurate temperature control by means of a constant temperature circulator. The tube is positioned at a 10° inclination with respect to the vertical. The tube has two ring marks spaced apart by 100 millimeters. A ball is allowed to fall through the fluid sample. Falling from a starting position at the top of the tube, the ball accelerates along a distance to reach a steady-state speed providing a uniform shear flow of the liquid in a sickle shape gap in the tube surrounding the ball. The time for the ball to pass between the ring marks on the tube is measured. The time is then used to calculate viscosity in the abso

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and cement compositions for cementing in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and cement compositions for cementing in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and cement compositions for cementing in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3244544

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.