Surgery – Respiratory method or device – Using liquified oxygen
Reexamination Certificate
1999-06-29
2003-11-25
Lewis, Aaron J. (Department: 3761)
Surgery
Respiratory method or device
Using liquified oxygen
C128S204150, C128S204170
Reexamination Certificate
active
06651653
ABSTRACT:
BACKGROUND OF THE INVENTION
The field of this invention relates to using an oxygen concentrator to create a portable supply of supplementary oxygen for ambulatory respiratory patients so that they can lead normal and productive lives—as the typical primary oxygen sources are too bulky to carry or require excessive power to operate.
There is a burgeoning need for home and ambulatory oxygen. Supplemental oxygen is necessary for patients suffering from lung disorders; for example, pulmonary fibrosis, sarcoidosis, or occupational lung disease. For such patients, oxygen therapy is an increasingly beneficial, life-giving development. While not a cure for lung disease, supplemental oxygen increases blood oxygenation, which reverses hypoxemia. This therapy prevents long-term effects of oxygen deficiency on organ systems—in particular, the heart, brain and kidneys. Oxygen treatment is also prescribed for Chronic Obstructive Pulmonary Disease (COPD), which afflicts about 25 million people in the U.S., and for other ailments that weaken the respiratory system, such as heart disease and AIDS. Supplemental oxygen therapy is also prescribed for asthma and emphysema.
The normal prescription for COPD patients requires supplemental oxygen flow via nasal cannula or mask twenty four hours per day. The average patient prescription is two liters per minute of high concentration oxygen to increase the oxygen level of the total air inspired by the patient from the normal 21% to about 40%. While the average oxygen flow requirement is two liters per minute, the average oxygen concentrator has a capacity of four to six liters of oxygen per minute. This extra capacity is occasionally necessary for certain patients who have developed more severe problems but they are not generally able to leave the home (as ambulatory patients) and do not require a portable oxygen supply.
There are currently three modalities for supplemental medical oxygen: high pressure gas cylinders, cryogenic liquid in vacuum insulated containers or thermos bottles commonly called “dewars,” and oxygen concentrators. Some patients require in-home oxygen only while others require in-home as well as ambulatory oxygen depending on their prescription. All three modalities are used for in-home use, although oxygen concentrators are preferred because they do not require dewar refilling or exchange of empty cylinders with full ones.
Only small high pressure gas bottles and small liquid dewars are portable enough to be used for ambulatory needs (outside the home). Either modality may be used for both in-home and ambulatory use or may be combined with an oxygen concentrator which would provide in-home use.
As we describe below, the above-described current methods and apparatus have proven cumbersome and unwieldy and there has been a long-felt need for improved means to supply the demand for portable/ambulatory oxygen.
For people who need to have oxygen but who need to operate away from an oxygen-generating or oxygen-storage source such as a stationary oxygen system (or even a portable system which cannot be easily carried), the two most prescribed options generally available to patients are: (a) to carry with them small cylinders typically in a wheeled stroller; and (b) to carry portable containers typically on a shoulder sling. Both these gaseous oxygen and liquid oxygen options have substantial drawbacks. But from a medical view, both have the ability to increase the productive life of a patient.
The major drawback of the gaseous oxygen option is that the small cylinders of gaseous oxygen can only provide gas for a short duration oxygen conserving devices that limit the flow of oxygen to the time of inhalation may be used. However, the conserving devices add to the cost of the service and providers have been reluctant to add it because there often is no health insurance reimbursement. Indeed, the insurance reimbursement for medical oxygen treatment appears to be shrinking.
Another drawback of the gaseous oxygen option is the source of or refill requirement for oxygen once the oxygen has been depleted from the cylinder. These small gas cylinders must be picked up and refilled by the home care provider at a specialized facility. This requires regular visits to a patient's home by a provider and a substantial investment in small cylinders for the provider because so many are left at the patient's home and refilling facility. Although it is technically possible to refill these cylinders in the patient's home using a commercial oxygen concentrator that extracts oxygen from the air, this task would typically require an on-site oxygen compressor to boost the output pressure of the concentrator to a high level in order to fill the cylinders. Additionally, attempting to compress the oxygen in pressurized canisters in the home is dangerous, especially for untrained people. This approach of course presents several safety concerns for in-home use. For example, in order to put enough of this gas in a portable container, it must typically be compressed to high pressure (~2000 psi). Compressing oxygen from 5 psi (the typical output of an oxygen concentrator) to 2000 psi will produce a large amount of heat. (Enough to raise the temperature 165° C. per stage based on three adiabatic compression stages with intercooling.) This heat, combined with the oxygen which becomes more reactive at higher pressures, sets up a potential combustion hazard in the compressor in the patient's home. Thus, utilizing and storing a high pressure gas system in the patient's home is dangerous and not a practical solution.
The convenience and safety issues are not the only drawbacks of this compressed oxygen approach. Another drawback is that the compressors or pressure boosters needed are costly because they require special care and materials needed for high pressure oxygen compatibility. For example, a Rix Industries, Benicia, Calif., ⅓ hp unit costs about 10,000 while a Haskel International, Burbank, Calif., air-powered booster costs about $2200 in addition to requiring a compressed air supply to drive it. Litton Industries and others also make oxygen pressure boosters.
Turning now to the liquid oxygen storage option, its main drawback is that it requires a base reservoir—a stationary reservoir base unit about the size of a standard beer keg—which has to be refilled about once a week. The liquid oxygen can then be obtained from a base unit and transferred to portable dewars which can be used by ambulatory patients. Also, with the liquid oxygen option, there is substantial waste, as a certain amount of oxygen is lost during the transfer to the portable containers and from evaporation. It is estimated that 20% of the entire contents of the base cylinder will be lost in the course of two weeks because of losses in transfer and normal evaporation. These units will typically boil dry over a period of 30 to 60 days even if no oxygen is withdrawn.
There are other complications. Typically, supplemental oxygen is supplied to the patient by a home care provider, in exchange for which it receives a fixed monetary payment from insurance companies or Medicare regardless of the modality. Oxygen concentrators for use in the home are preferred and are the least expensive option for the home care provider. For outside the home use however, only small high pressure gas bottles and small liquid dewars are portable enough to be used for ambulatory needs. One of these two modalities may be used for both in-home and ambulatory use or may be combined with an oxygen concentrator which would provide in-home use. In either case, the home care provider must make costly weekly or biweekly trips to the patient's home to replenish the oxygen. One of the objects of this invention is to eliminate these costly “milk runs.”
Portable oxygen concentrators are commercially available for providing patients with gaseous oxygen. These devices are “portable” solely in the sense that they can be carried to another point of use such as in an automobile or in an airplane. At present, t
Hill Charles C.
Hill Theodore B.
Honkonen Scott C.
Walker Graham
Lewis Aaron J.
Procopio Cory Hargreaves & Savitch LLP
SeQual Technologies, Inc.
LandOfFree
Methods and apparatus to generate liquid ambulatory oxygen... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and apparatus to generate liquid ambulatory oxygen..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus to generate liquid ambulatory oxygen... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3128606