Winding – tensioning – or guiding – Composite article winding – On internally toothed core
Reexamination Certificate
2000-10-27
2003-09-02
Matecki, Kathy (Department: 3654)
Winding, tensioning, or guiding
Composite article winding
On internally toothed core
C242S433300, C242S433400, C029S596000
Reexamination Certificate
active
06612519
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is related to methods and apparatus for manufacturing dynamo-electric machines such as electric motors, generators, and similar apparatus. More specifically, the present invention relates to improved solutions for rapidly winding coils of wire on different sized cores of dynamo-electric machine using a mechanical winding machine.
Electric motors generally include two main components, a fixed portion and a rotating portion or “core.” Often, the fixed portion is referred to as a “stator,” while the rotating core portion is often referred to as the “armature.” In these cases, the core typically includes a “rotor” that rotates inside the stator. The rotating core may be an armature that is typically formed from a stack of laminated pieces of iron or steel and has a series of slots spaced around its circumference onto which wire is wound. A commutator may be attached to the rotor that provides an electrical connection to the armature. The rotor and the commutator are mounted in an axially spaced relation on a common shaft.
The commutator is formed from a series of circumferentially spaced conductive bars that each may include a connection point such as a “tang” to which the starting and ending leads of the wound coils are physically and electrically connected. While tangs are a commonly available type of connection point, persons skilled in the art will appreciate that other types of connections are also available. For example, instead of a tang, a channel or slot within a solid commutator bar may be used in which wire leads are inserted into the channel and the channel is then sealed around the wire. In either case, electricity supplied to the wire induces a current which interacts with a magnetic field produced in the stator to create torque that causes the motor to rotate.
There are numerous known machines that are capable of winding wire onto the slotted lamination stack. These winding machines have at least one—and often two—wire applying devices known as “flyers” that rotate about an axis normal to that of the lamination stack. The flyers draw wire from a source and wind it around the slots to produce a wound coil having a desired number of turns. When a coil (or set of coils in the case of a double flyer machine) is completely wound, the flyers stop and the wire leads are brought next to the tangs or other connection points on the commutator to which they will be attached. The core is then rotationally indexed to present the tangs (or other connection points) to the wire hooking devices, and the flyer wraps wire around them. Rotational indexing also brings the next set of slots on the lamination stack into position to receive wire from the flyers.
Various examples of wire winding machines are described in, for example, Anderson U.S. Pat. No. 3,911,563, and in Lombardi et al. U.S. Pat. Nos. 5,127,594 and 5,257,745, all of which are commonly assigned with the present application. Each of the above identified patents are hereby incorporated by reference.
While such winders may be very effective for properly winding wire on the lamination stack slots, difficulties may arise when it is desired to wind wire around a core that does not have the same dimensions as the previously wound core. Currently available winding machines often require the center of each lamination stack to be aligned with a fixed axis on the machine. Moreover, two lamination stacks may have different centers even if they utilize a common sized shaft because, for example, the size of the lamination stack can also vary.
Additional difficulties also occur due to the multiple times a core is handled prior to winding. For example, one device may be used to form the core. This process includes selecting the proper number of laminations, stacking them on a rotor shaft, and fixing them in place. Then, a commutator must be added to complete the core. The completed core is then transferred to the winding machine, often with a known first index position (i.e., the first slot in the lamination stack to be wound). Problems may occur, however, during the transfer from the load/unload device to the gripper that holds the core in place during winding and that first index position may be lost. This causes a delay in the manufacturing process and may even require human intervention to insure that the core is properly indexed prior to winding.
Even if the first index position is not lost, known winding systems may be inherently slower than necessary due to other limitations. For example, in known winding systems, the winder must wait a given amount of time after a core is loaded for the load/unload device to move out of the way. This waiting time is directly proportional to the distance the load/unload device must travel to get out of the way. An additional delay is also inherent in that the winder must pause and wait while the loader/unloader travels that same distance prior to removing the wound core from the winder.
Conventional winding systems also typically are inherently inefficient as the winding flyers are idle for a large portion of each operational cycle. This is due to the way in which the cores are loaded and unloaded into the winding area. In known systems, a load/unload unit is utilized to remove wound cores and to place unwound cores into the winding area. Prior to and subsequent to each load/unload operation, the winding devices (including the flyers and winding guides) must be moved out of the way so that the load/unload unit may move inside the winding area to manipulate the cores. Due to the size of the typical load/unload unit, the time required for moving the winding systems out of and into position is relatively significant. The system cannot be winding while the winding systems are moving, resulting in inefficiency.
Further problems with conventional winding systems are the inherent problems in processing sequential cores which are different sizes. Each core must be aligned such that its center is co-located with the center of the flyers. The load/unload unit is often used to perform the alignment function as well. Unfortunately, this results in the load/unload unit being a substantially complex piece of equipment that requires a variable drive to accommodate different sized cores.
Additional problems also often occur in configuring automated winding systems. These problems are related to the fact that the systems, which typically include multiple hydraulic and/or air pressure lines, must be calibrated to run at specific operational pressures. Typical installations, however, often are configured such that the pressure controls, which are needed very infrequently after the initial baseline levels are set, are located in a hidden location such as underneath the operational console. While this may be convenient for normal operation, as well as being aesthetically pleasing, the conventional location of these controls often makes the initial setup very difficult, especially for a single operator. The operator simply cannot easily reach and adjust the controls while simultaneously observing the impact of those changes, due to the location of those controls.
In view of the foregoing, it is an object of this invention to provide methods and apparatus for transferring cores from a load/unload apparatus to a winding apparatus while retaining alignment of the lamination stack slots.
It also is an object of this invention to provide methods and apparatus for winding core coils in which the winding device is operational at an increased level of efficiency.
It is a further object of the present invention to provide methods and apparatus for simplifying sequential processing of different sized cores.
It is a still further object of the present invention to provide methods and apparatus for enabling an operator to adjust the initial pressure and other settings on the winding system while simultaneously being able to observe the impact of those adjustments.
SUMMARY OF THE INVENTION
These and other objects of the invention are accomplished in accordance with the principles
Becherucci Raffaele
Manuelli Giovanni
Mugelli Maurizio
Stratico Gianfranco
Axis USA Inc.
Fish & Neave
Kanabe George L.
Langdon Evan
Matecki Kathy
LandOfFree
Methods and apparatus for winding electric machine cores does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and apparatus for winding electric machine cores, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for winding electric machine cores will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3099941