Methods and apparatus for tumor diagnosis

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S443000

Reexamination Certificate

active

06309353

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods and apparatus for tumor diagnosis by measuring and evaluating morphological surface roughness of tumor which is drawn in detail as a three dimensional image.
More specifically, present invention relates to methods and apparatus for tumor diagnosis that can be applied to pathological diagnosis support system, which discovers cancer tissue (especially breast cancer tissue) among normal tissue by extracting boundary between the cancer tissue and the normal tissue from three dimensional image made from two dimensional cross sectional image such as magnetic resonance image or ultrasonic echography image.
BACKGROUND OF THE INVENTION
Breast cancer is a major cause of death among women over the age of forty. It is significant to discriminate and specify the malignant tumors among the various tumors. Prevention and early diagnosis of breast cancer are of foremost importance. Since there are various kinds of tumors in the mammary gland, it is significant to discriminate and specify the malignant tumors among the various tumors.
X-ray mammography and ultrasonic echography are mostly used for diagnosis of the breast tumors. Mammography is an X-ray transmission imaging technique. This technique has been studied proposed by C. Kimme and D. Wei, and known as local texture analysis. Or binary digitizes method proposed by D. Brzakovic. Alternatively, an ultrasonic echography is a cross sectional imaging based on pulse-echo technique. A characteristic of malignant tumors is that the tumor boundaries appear as uneven complex shapes.
This geometrical characteristic is usually evident in the image diagnosis. So far, several approaches have been proposed for detection and evaluation of malignant tumors in the mammography.
On the other hand, the diagnosis of breast tumors using echography has an advantage over early detection of the malignant tumors, because there is capability to produce a three dimensional image of the tumor from a series of cross sectional images, and thus there is a potential to evaluate the surface roughness of a tumor in three dimensional space. This kind of method is opened, for example, in Japanese Patent Laid-open Publication No.93-123318.
The ultrasonic images, however, are degraded by speckle noise and various kinds of artifacts due to reflection, refraction, and so on, thus the conventional image processing is not applicable for the automated extraction of tumors. Consequently, well-experienced inspector can observe cross sectional image of inner of mammary gland on screen with scanning the probe on the body over the mammary gland. And tumors can be discovered and malignant tumor can be distinguished with high accuracy from benign tumor by the inspector. Although, herein a problem arises. To achieve precise (or reliable) diagnosis, it depends on the experience of the inspector, because of the fact that a set of cross sectional images (or views onscreen) requires experience to analyze and diagnose the tumor precisely. And it is difficult to grasp the information about real morphological surface roughness and 3D-shape from the cross sectional 2D-images. The object of interest other than breast tumor is, for example, heart or bladder of embryo. In such a diagnostic for cardiovascular disease, the original image data necessary to construct the third dimensional Figure, which change on the time axis, are multislice Figure of whole heart containing plural phase in one pulsation.
As Figure information on border Figure of heart and inner space of blood vessels or extima and other space also as the third dimensional (3D) distribution of blood flow in the heart and blood vessels.
Also in the application described above, it is significant for achieving the precise and reliable diagnosis to obtain a 3D(three-dimensional) image.
SUMMARY OF THE INVENTION
Present invention features methods and apparatus for tumor diagnosis (or, in other words, tumor diagnosis system) using three-dimensional ultrasonic echographic images. Since a malignant tumor is characterized by the morphological surface roughness, it is significant for the diagnosis to extract the exact boundaries of the tumor and show the three dimensional structure of the tumors. The proposed system consists of three-dimensional image capturing system and a fuzzy reasoning based algorithm for the extraction of breast tumors. The method we proposed in this paper classifies all the voxel as one of “tumor”, “normal tissue”, or “boundary” by employing fuzzy reasoning and relaxation techniques. In order to evaluate the surface roughness, we define a parameter of a ratio of the surface area over the volume of the extracted tumor. The results for the clinical cases of three malignant and two benign tumors are successfully obtained by the system using an ultrasonic mechanical sector-scanning probe of 10 MHz. It is found that the differences in the surface roughness between both types of tumors are clearly evident using a rendered surface image of the extracted tumor, and the average value of the defined parameter for the above three malignant is 9.6, and 3.8 for the benign.


REFERENCES:
patent: 5876343 (1999-03-01), Chen et al.
patent: 6132376 (2000-10-01), Hossack et al.
patent: 5-123318 (1993-05-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and apparatus for tumor diagnosis does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and apparatus for tumor diagnosis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for tumor diagnosis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2584062

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.