Communications: directive radio wave systems and devices (e.g. – Testing or calibrating of radar system – By monitoring
Reexamination Certificate
2002-05-13
2004-10-12
Gregory, Bernarr E. (Department: 3662)
Communications: directive radio wave systems and devices (e.g.,
Testing or calibrating of radar system
By monitoring
C342S118000, C342S120000, C342S165000, C342S175000, C342S195000, C342S357490, C342S357490, C701S207000, C701S213000, C701S223000
Reexamination Certificate
active
06803878
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to testing of radar systems, and more specifically to a radar testing system which is capable of synchronizing radar data with global positioning satellite (GPS) data and digital elevation map (DEM) data to determine an accuracy of the radar.
The proper navigation of an aircraft in all phases of its flight is based to a large extent upon the ability to determine the terrain and position over which the aircraft is passing. In this regard, instrumentation, such as radar systems, and altimeters in combination with the use of accurate electronic terrain maps, which provide the height of objects on a map, aid in the flight path of the aircraft. Electronic terrain maps are well known and are presently used to assist in the navigation of aircraft.
Pulse radar altimeters demonstrate superior altitude accuracy due to their inherent leading edge return signal tracking capability. The pulse radar altimeter transmits a pulse of radio frequency (RF) energy, and a return echo is received and tracked using a tracking system. The interval of time between signal bursts of a radar system is called the pulse repetition interval (PRI). The frequency of bursts is called the pulse repetition frequency (PRF) and is the reciprocal of PRI.
FIG. 1
shows an aircraft
2
with the Doppler effect illustrated by isodops as a result of selection by the use of Doppler filters. The area between the isodops of the Doppler configuration will be referred to as swaths. The Doppler filter, and resulting isodops are well known in this area of technology and will not be explained in any further detail. Further, the aircraft
2
in the specification will be assumed to have a vertical velocity of zero. As is known, if a vertical velocity exists, the median
8
of the Doppler effect will shift depending on the vertical velocity. If the aircraft
2
has a vertical velocity in a downward direction, the median of the Doppler would shift to the right of the figure. If the aircraft
2
has a vertical velocity in an upward direction, the Doppler would shift to the left of the figure. Again, it will be assumed in the entirety of the specification that the vertical velocity is zero for the ease of description. However, it is known that a vertical velocity almost always exists.
Radar illuminates a ground patch bounded by the antenna beam
10
from an aircraft
2
.
FIG. 1
a
shows a top view of the beam
10
along with the Doppler effect and
FIG. 1
b
shows the transmission of the beam
10
from a side view. To scan a particular area, range gates are used to further partition the swath created by the Doppler filter. To scan a certain Doppler swath, many radar range gates operate in parallel. With the range to each partitioned area determined, a record is generated representing the contour of the terrain below the flight path. The electronic maps are used with the contour recording to determine the aircraft's position on the electronic map. This system is extremely complex with all the components involved as well as the number of multiple range gates that are required to cover a terrain area. As a result, the computations required for this system are very extensive.
In addition to the complexity, the precision and accuracy of the distance to a particular ground area or object has never been attained using an airborne radar processor.
BRIEF SUMMARY OF THE INVENTION
In one aspect a method for testing radar system performance utilizing radar data test points in a radar data file is provided. The method comprises interpolating GPS data from a flight test to provide a GPS data point for every radar data test point and generating body coordinate values for every point in a corresponding digital elevation map (DEM) file using the interpolated GPS data. The method further comprises applying a bounding function around at least a portion of the body coordinate values generated from the DEM file at a given time, determining which body coordinate value generated from the DEM file is closest a current GPS data point for the given time, and comparing the determined body coordinate value to the radar data test points at the given time.
In another aspect, a computer is provided which is configured to store a global positioning satellite (GPS) file with GPS data, a radar data file including radar data test points, the radar data test points time synchronized with the GPS data, and a digital elevation map (DEM) file. The computer is further configured to interpolate the GPS data to provide a GPS data point for every radar data test point, generate body coordinate values for every data point in the DEM file using the interpolated GPS data, process GPS data points by determine which body coordinate value generated from the DEM file is closest to each GPS data point at a given time, and compare the closest body coordinate value at the given time to the radar data test point at the given time.
REFERENCES:
patent: 4164036 (1979-08-01), Wax
patent: 4310894 (1982-01-01), Lee et al.
patent: 4328495 (1982-05-01), Thue
patent: 4553221 (1985-11-01), Hyatt
patent: 4684950 (1987-08-01), Long
patent: 4851852 (1989-07-01), Bjorke et al.
patent: 5107268 (1992-04-01), Sturm et al.
patent: 5140331 (1992-08-01), Aulenbacher et al.
patent: 5150125 (1992-09-01), Hager
patent: 5173706 (1992-12-01), Urkowitz
patent: 5264853 (1993-11-01), Sturm et al.
patent: 5309161 (1994-05-01), Urkowitz et al.
patent: 5389931 (1995-02-01), Anderson et al.
patent: 5477226 (1995-12-01), Hager et al.
patent: 5485157 (1996-01-01), Long
patent: 5589833 (1996-12-01), Randall et al.
patent: 5646857 (1997-07-01), McBurney
patent: 5867119 (1999-02-01), Corrubia et al.
patent: 5892462 (1999-04-01), Tran
patent: 5945926 (1999-08-01), Ammar et al.
patent: 5952961 (1999-09-01), Denninger
patent: 5969667 (1999-10-01), Farmer et al.
patent: 6011505 (2000-01-01), Poehler et al.
patent: 6025800 (2000-02-01), Hager
patent: 6125155 (2000-09-01), Lesthievent et al.
patent: 6148195 (2000-11-01), Schuchman et al.
patent: 6232910 (2001-05-01), Bell et al.
patent: 6233522 (2001-05-01), Morici
patent: 6260052 (2001-07-01), Song
patent: 6297764 (2001-10-01), Wormington et al.
patent: 6337888 (2002-01-01), Huang et al.
patent: 6362775 (2002-03-01), Goebel et al.
patent: 6362776 (2002-03-01), Hager et al.
patent: 19501879 (1996-07-01), None
patent: 0 649 034 (1995-04-01), None
patent: 2708349 (1995-02-01), None
patent: 2213339 (1989-08-01), None
patent: WO 00 02009 (2000-01-01), None
patent: WO 01/25819 (2001-04-01), None
Archarya, N.A. et al., “Intelligent EDI Management in the Adaptive Tactical Navigator,” IEEE. 1998, pp. 120-125.
International Search Report PCT/US03/15689.
Formo Jason I.
Hager James R.
Oven James B.
Armstrong Teasdale LLP
Gregory Bernarr E.
Honeywell International , Inc.
Matthew Luxton, Esq.
LandOfFree
Methods and apparatus for terrain correlation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods and apparatus for terrain correlation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and apparatus for terrain correlation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3262825